Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 254-258    https://doi.org/10.11896/j.issn.1005-023X.2018.02.019
  物理   材料研究 |材料 |
环境温湿度对铝合金焊缝气孔和力学性能的影响
乔建毅1,2,王文权1,阮野1,郭成伟3
1 吉林大学材料科学与工程学院,长春 130022
2 中广核研究院有限公司,深圳 518031
3 承德石油高等专科学校,承德 067000
Effects of Temperature and Humidity on Porosity and Mechanical Properties of Aluminum Alloy MIG Joints
Jianyi QIAO1,2,Wenquan WANG1,Ye RUAN1,Chengwei GUO3
1 College of Materials Science and Engineering, Jilin University, Changchun 130022
2 China Nuclear Power Technology Research Institute, Shenzhen 518031
3 Chengde Petroleum College, Chengde 067000
下载:  全 文 ( PDF ) ( 2623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

对于高速轨道客车铝车身的生产制造,气孔是焊接中最常见的缺陷。采用X射线法研究了不同温度和湿度下铝合金6082和5083熔化极氩弧焊(MIG)焊缝的气孔情况。结果表明,在焊接过程中环境的绝对湿度(是温度和湿度的综合体现)对焊缝的气孔率有重要影响,铝合金6082焊缝的气孔敏感性要比铝合金5083高。在拉伸试验中铝合金6082接头的断裂位置一般在焊接热影响区(HAZ),随着绝对湿度的增加,接头的抗拉强度和断后伸长率几乎保持不变,但接头的正弯和背弯角度分别减小了74.4%和64.4%。铝合金5083接头的断裂位置一般出现在熔合区,随着绝对湿度的增加,接头的抗拉强度和断后伸长率分别减小了4.0%和15.7%,但是弯曲性能变化不大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔建毅
王文权
阮野
郭成伟
关键词:  铝合金  MIG焊  气孔  力学性能    
Abstract: 

Generally speaking, porosity defect is one of the inevitable challenges encountered in the joints of aluminum alloy structures during fabrication of high speed railway vehicles. X-ray inspection was used to investigate the porosity rate of aluminum alloy 6082 joints and 5083 joints welded by metal inert gas arc welding (MIG) under different temperatures and humidity. The results demonstrated that the susceptibility of aluminum alloy 6082 welded joints to porosity was higher than that of 5083 welded joints. The porosity rate in aluminum alloy joints was almost determined by the absolute humidity in the welding environment. During the tensile strength test, the fractures of the welded aluminum alloy 6082 joints were mainly located in the heat affected zone (HAZ). With the increase of the absolute humidity, the tensile strength and elongation of the 6082 joints remained almost stable. However, the front and back bending angles of the joints were reduced by 74.4% and 64.4%, respectively. The fractures of the welded aluminum alloy 5083 joints were mainly located in the fusion zone. With the increase of the absolute humidity, the tensile strength and elongation of the 5083 joints decreased by 4.0% and 15.7%, respectively. Whereas, the bending capacity of the 5083 joints was hardly affected by the humidity variation in the welding environment.

Key words:  aluminum alloys    MIG welding    porosity    mechanical properties
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG442  
基金资助: 吉林省科技厅基金项目(20150503)
引用本文:    
乔建毅,王文权,阮野,郭成伟. 环境温湿度对铝合金焊缝气孔和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 254-258.
Jianyi QIAO,Wenquan WANG,Ye RUAN,Chengwei GUO. Effects of Temperature and Humidity on Porosity and Mechanical Properties of Aluminum Alloy MIG Joints. Materials Reports, 2018, 32(2): 254-258.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.019  或          https://www.mater-rep.com/CN/Y2018/V32/I2/254
Material Tensile strength
MPa
Elongation
%
Thermal conductivity
(20 ℃)/(W/(m·K))
6082 349.9 9.9 174
5083 310.1 22.8 117
表1  铝合金6082和5083的力学和物理性能
图1  拉伸试样形状及尺寸
图2  弯曲试样形状及尺寸
Temperature/℃ Humidity/% X-ray inspections and image analysis Porosity/%
Aluminum
alloy 6082
10 30 1.43
20 30 1.66
20 50 1.86
20 70 2.19
30 30 1.93
表2  铝合金6082和 5083焊缝的气孔率
Temperature/℃ Humidity/% X-ray inspections and image analysis Porosity/%
Aluminum
alloy 5083
10 30 0.16
20 30 0.19
20 50 0.34
20 70 0.56
30 30 0.41
表2  续
Temperature/℃ 10 20 30
Relative humidity/% 30 30 50 70 30
Saturated humidity
g/m3
9.35 17.30 30.30
Absolute humidity
g/m3
2.81 5.19 8.65 12.32 9.09
表3  不同温度和相对湿度下的绝对湿度
图3  绝对湿度对气孔的影响
图4  焊缝内部氢气孔的形貌
图5  焊缝皮下气孔的显微形貌:(a)铝合金6082焊缝的纵截面;(b)铝合金5083焊缝的纵截面
图6  绝对湿度对铝合金6082接头拉伸性能的影响
图7  绝对湿度对铝合金5083接头拉伸性能的影响
图8  焊接接头断口表面气孔分布:(a)5083接头拉伸断口;(b)6082接头弯曲断口
Absolute
humidity/(g/m3)
Pressure head
diameter/mm
6082 welded joint 5083 welded joint
Front bending
angle/(°)
Back bending
angle/(°)
Front bending
angle/(°)
Back bending
angle/(°)
2.81 30 101 109 180 180
5.19 30 180 180 180 180
8.65 30 54 74 180 180
9.09 30 74 66 180 180
12.32 30 46 64 180 180
表4  绝对湿度对铝合金6082和5083接头弯曲性能的影响
1 1 王元良, 陈辉 . 高速列车铝合金车体的焊接技术[M]. 成都: 西南交通大学出版社, 2012: 12.
2 Lee W B, Yeon Y M, Jung S B . Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy[J]. Materials Science and Technology, 2003,19(11):1513.
3 Gou G, Zhang M, Chen H , et al. Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains[J]. Materials & Design, 2015,85:309.
4 Haboudou A, Peyre P, Vannes A B , et al. Reduction of porosity content generated during Nd∶YAG laser welding of A356 and AA5083 aluminium alloys[J]. Materials Science and Engineering:A, 2003,363(1):40.
5 Pastor M, Zhao H, Martukanitz R P , et al. Porosity, underfill and magnesium loss during continuous wave Nd∶YAG laser welding of thin plates of aluminum alloys 5182 and 5754[J]. Welding Journal, 1999,78(6):207s.
6 Ashton R F, Wesley R P, Dixon C R . The effect of porosity on 5086-H116 aluminum alloy welds[J]. Welding Research, 1975,54(3):95s.
7 Wang J, Wang G Z, Wang C M . Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy[J]. Metalurgija, 2015,54(4):683.
8 Davis J R . ASM specialty handbook: Aluminum and aluminum Alloys[M]. 3rd ed.OH:ASM International, 1993.
9 Liu H I, Li X P, Rui Y N . Monitor on-line and fault diagnosis to high speed centrifugal hydrogen compressors based on the theories of EMD and correlation dimension[J]. Applied Mechanics & Materials, 2010,33:523.
10 J. D.法斯特.刁伟涛,梁新邦译.金属中的气体[M]. 北京: 冶金工业出版社, 1983: 134.
11 11 陈伯蠡. 焊接工程缺欠分析与对策[M]. 北京: 机械工业出版社, 1997: 207.
12 И. К帕豪德涅.焊缝中的气体[M]. 北京: 机械工业出版社, 1977: 197.
13 13 张文钺. 焊接冶金学[M]. 北京: 机械工业出版社, 1999.
14 14 周敏惠, 於美甫 . 焊接缺陷与对策[M]. 上海: 上海科学技术文献出版社, 1989.
15 15 张汉谦. 钢熔焊接头金属学[M]. 北京: 机械工业出版社, 2001.
16 Marioara C D, Andersen S J, Jansen J , et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy[J]. Acta Materialia, 2003,51(3):789.
17 Qiao Jianyi, Shao Youfa, Ruan Ye , et al. Microstructure and pro-perties of MIG welding joint of aluminum alloy 6082 and 5083[J]. Materials Review B: Research Papers, 2016,30(12):94(in Chinese).
18 乔建毅, 邵有发, 阮野 , 等. 铝合金6082和5083 MIG焊接头的微观组织和性能[J]. 材料导报:研究篇, 2016,30(12):94.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed