Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 259-262    https://doi.org/10.11896/j.issn.1005-023X.2018.02.020
  物理   材料研究 |材料 |
热轧钢材氧化铁皮的高温形变机理研究
李志峰1,何永全2,曹光明1,汤军舰1,刘振宇1
1 东北大学轧制与连轧自动化国家重点实验室,沈阳 110819
2 郑州航空工业管理学院机电工程学院,郑州 450015
Mechanism Study of High-temperature Deformation of Oxide Scale on Hot-rolled Steel
Zhifeng LI1,Yongquan HE2,Guangming CAO1,Junjian TANG1,Zhenyu LIU1
1 The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2 The School of Mechatronics Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015
下载:  全 文 ( PDF ) ( 3218KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用热力模拟实验机研究了低碳微合金钢在热变形过程中钢材表面氧化铁皮的高温形变机理,并采用场发射电子探针和电子背散射衍射仪来表征氧化铁皮的厚度、截面形貌、元素分布和晶体结构。结果表明,在高温条件下钢材表面的氧化铁皮具有较好的塑性,氧化铁皮的变形特征与温度和变形量密切相关。此外,塑性变形的位置主要分布在FeO层,这主要是由于FeO的晶体结构为疏松粗大的柱状晶,利于其在高温下发生塑性变形。根据氧化铁皮塑性变形机制合理制定热轧工艺可以使钢材表面的氧化铁皮与钢基体等比例变形,从而达到改善热轧钢材表面质量的目的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志峰
何永全
曹光明
汤军舰
刘振宇
关键词:  氧化铁皮  高温压缩  塑性变形  柱状晶    
Abstract: 

The high-temperature deformation mechanism of oxide scale on low micro-alloy carbon steel was studied using a thermo-mechanical simulator. The thickness, cross-sectional morphology, element distribution and grain structure of oxide scale were observed by electron probe microanalysis (EPMA) and electron backscatter diffraction (EBSD). The results indicated that the plasticity of oxide scale depended on temperature and degree of deformation. Furthermore, FeO layer was the primary region where plastic deformation distributed. This can be explained by the grain structure of FeO layer consisted of loose and larger columnar grains which was beneficial to the plastic deformation. Therefore, the oxide scale and steel substrate at high-temperature developed in equal proportion according to the plastic deformation mechanism of oxide scale, which revealed that the surface quality of hot-rolled steel could be improved by the hot-rolled process.

Key words:  oxide scale    high-temperature compression    plastic deformation    columnar grain
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG111.5  
基金资助: “十二五”国家科技支撑计划项目(2011BAE13B04);国家自然科学基金(51204047;U1660117)
引用本文:    
李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
Zhifeng LI,Yongquan HE,Guangming CAO,Junjian TANG,Zhenyu LIU. Mechanism Study of High-temperature Deformation of Oxide Scale on Hot-rolled Steel. Materials Reports, 2018, 32(2): 259-262.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.020  或          https://www.mater-rep.com/CN/Y2018/V32/I2/259
图1  加工样品的左视图与剖面图
图2  模拟氧化铁皮热变形行为的实验装置示意图
图3  实验用钢的高温氧化动力学曲线
图4  实验钢恒温氧化1 800 s的断面微观形貌
图5  氧化铁皮厚度随基体形变的变化
图6  实验钢的氧化铁皮在压缩变形后的断面形貌: (a)950 ℃变形30%,(b)950 ℃变形50%
图7  实验钢的氧化铁皮在1 150 ℃压缩50%的断面形貌和元素分布(电子版为彩图)
图8  实验钢的氧化铁皮在不同温度的塑性变形量对比
图9  实验钢在1 050 ℃氧化10 min的氧化铁皮断面结构图
1 Genève D, Rouxel D, Pigeat P , et al. Descaling ability of low-alloy steel wires depending on composition and rolling process[J]. Corrosion Science, 2010,52(4):1155.
2 Chattopadhyay A, Kumar P, Roy D . Study on formation of “easy to remove oxide scale” during mechanical descaling of high carbon wire rods[J]. Surface and Coatings Technology, 2009,203(19):2912.
3 Abuluwefa H T, Guthrie R I L, Ajersch F . Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation[J]. Metallurgical and Materials Transactions A, 1997,28(8):1633.
4 Zhou C H, Ma H T, Wang L . Effect of compressive stresses on microstructure of scales formed on pure iron during continuous air coo-ling[J]. Journal of Iron and Steel Research International, 2010,17(2):27.
5 Hu X J, Zhang B M, Chen S H , et al. Oxide scale growth on high carbon steel at high temperatures[J]. Journal of Iron and Steel Research International, 2013,20(1):47.
6 Yu X, Jiang Z, Zhao J , et al. Effects of grain boundaries in oxide scale on tribological properties of nanoparticles lubrication[J]. Wear, 2015,333:1286.
7 West G D, Birosca S, Higginson R L . Phase determination and microstructure of oxide scales formed on steel at high temperature[J]. Journal of Microscopy, 2005,217(2):122.
8 Wei D B, Huang J X, Zhang A W , et al. The effect of oxide scale of stainless steels on friction and surface roughness in hot rolling[J]. Wear, 2011,271:2417.
9 Jiang Z Y, Tang J, Sun W , et al. Analysis of tribological feature of the oxide scale in hot strip rolling[J]. Tribology International, 2010,43(8):1339.
10 Basabe V V, Szpunar J A . Growth rate and phase composition of oxide scales during hot rolling of low carbon steel[J]. ISIJ International, 2004,44(9):1554.
11 Hidaka Y, Anraku T, Otsuka N . Deformation of iron oxides upon tensile tests at 600-1 250 ℃[J]. Oxidation of Metals, 2003,59(1):97.
12 Kim B K, Szpunar J A . Orientation imaging microscopy for the study on high temperature oxidation[J]. Scripta Materialia, 2001,44(11):2605.
13 Suárez L, Houbaert Y, Eynde X V , et al. High temperature deformation of oxide scale[J]. Corrosion Science, 2009,51(2):309.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[3] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[4] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[5] 孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
[6] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[7] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[8] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[9] 汪建强, 徐斌, 谢碧君, 张健杨, 孙明月. ODS钢在热加工过程中纳米氧化物演化行为的研究进展[J]. 材料导报, 2022, 36(19): 20110267-8.
[10] 万里, 张奇, 张勇, 唐建国, 邓运来. Cr和Mn对汽车用铝合金型材压溃性能的影响[J]. 材料导报, 2022, 36(18): 20110147-4.
[11] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[12] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[13] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[14] 孙彬, 程磊, 尤宏广, 曹光明, 刘振宇. 镀锌用热轧SPHC钢的氧化铁皮在升温过程的组织转变[J]. 材料导报, 2021, 35(14): 14125-14129.
[15] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed