Abstract: In this paper, the research progress of ω phase transformation in zirconium and its alloys under high pressure hydrostatic pressure is reviewed. The types of solid-state phase transformation of zirconium and its alloys are systematically described, including martensitic phase transformation, bulk phase transformation, second phase precipitation and the mechanism and precipitation behavior of ω phase transformation. The phase transformation conditions induced by high pressure, the effect of phase transformation on microstructure and properties, and the research status of the formation mechanism of ω phase at high pressure are emphatically introduced. According to the research progress, when the pressure is greater than 3 GPa, the high pressure will induce the formation of ω phase in zirconium alloy. When ω phase exists in the matrix, the microstructure is significantly refined. When the grain size containing ω phase is less than 100 nm, the hardness and strength of the matrix increase, and the plasticity decreases. ω phase can significantly improve the superconductivity of zirconium alloy; at present, there are three kinds of views on the formation mechanism of high-pressure ω phase, and the differences mainly focus on the formation of mesophase and the orientation relationship of α‖ω. Based on the current research status, it is pointed out that the mechanism of ω phase transformation induced by high pressure of zirconium alloy needs to be further improved, and the future research direction of ω phase of zirconium alloy is prospected.
通讯作者: *郑勇,中国核动力研究设计院副研究员、硕士研究生导师。2018年西北工业大学材料加工工程专业博士毕业,毕业后到中国核动力研究设计院工作至今。目前主要从事核燃料及材料的研究工作。发表论文30余篇,包括Journal of Materials Science and Technology、Ceramics International、Journal of Alloys and Compounds、The International Journal of Advanced Manufacturing Technology、Archives of Civil and Mechanical Engineering等。npic_zhengy@126.com
引用本文:
郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
ZHENG Yong, QIU Shaoyu, WEI Lianfeng, YANG Canxiang, WANG Yu, TIAN Darong, YAO Lifu. Research Progress of High Pressure Induced ω Phase Transformation in Zirconium and Its Alloys. Materials Reports, 2024, 38(17): 23020025-7.
1 Zhao W J, Zhou B X, Miao Z, et al. Atomic Energy Science and Technology, 2005(S1), 2(in Chinese). 赵文金, 周邦新, 苗志, 等. 原子能科学技术, 2005(S1), 2. 2 Yong H J, Kyoung O L, Hyun G K. Journal of Nuclear Materials, 2002, 302(1), 9. 3 Qiu R S, Luan B F, Chai L J, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(6), 1605(in Chinese). 邱日盛, 栾佰峰, 柴林江, 等. 中国有色金属学报, 2012, 22(6), 1605. 4 Cheng L, Yang Z B, Miao Z, et al. Nuclear Power Engineering, 2012(S2), 39(in Chinese). 陈亮, 杨忠波, 苗志, 等. 核动力工程, 2012(S2), 39. 5 Wu Y C, Bai Y Q, Song Y, et al. Nuclear Science and Engineering, 2014(2), 201(in Chinese). 吴宜灿, 柏云清, 宋勇, 等. 核科学与工程, 2014(2), 201. 6 Deng Z M, Hong Y S, Zhu C, et al. Progress in Mechanics, 2003(01), 56(in Chinese). 邓忠民, 洪友士, 朱晨, 等. 力学进展, 2003(01), 56. 7 Zhang Z, Cui Z L, et al. Nanotechnology and nanomaterials, National Defense Industry Press, China, 2000 (in Chinese). 张志, 崔作林. 纳米技术与纳米材料, 国防工业出版社, 2000. 8 Gong A X, Xu C, An Z, et al. Materials Reports, 2024, 38(10), 23010111(in Chinese). 龚翱翔, 徐驰, 安瞻, 等. 材料导报, 2024, 38(10), 23010111. 9 Ruslan Z V, Rinat K I, Igor V A. Progress in Materials Science, 2000, 45(2), 103. 10 Ruslan Z V. Bulk nanostructured materials:fundamentals and applications, John Wiley & Sons, Inc, 2013. 11 Valiev R Z, Langdon T G. Progress in Materials Science, 2006, 51(7), 881. 12 Chino Y, Sassa K, Mabuchi M, et al. Scripta Materialia, 2008, 59(4), 399. 13 Saito Y, Utsunomiya H, Tsuji N, et al. Acta Materialia, 1999, 47(2), 579. 14 Zhang Y. High temperature and high pressure control of microstructure and mechanical properties of zirconium and its alloys. Ph. D. Thesis, Yanshan University, China, 2017(in Chinese). 张洋. 锆及其合金组织和机械性能的高温高压调控. 博士学位论文, 燕山大学, 2017. 15 Xin S W, Zhao Y Q, Zeng W D. Titanium Industry Progress, 2007(5), 28(in Chinese). 辛社伟, 赵永庆, 曾卫东. 钛工业进展, 2007(5), 28. 16 Chang H, Zhou L, Zhang T J. Rare Metal Materials and Engineering, 2007, 36(9), 1505(in Chinese). 常辉, 周廉, 张廷杰. 稀有金属材料与工程, 2007, 36(9), 1505. 17 Deng A H. Shanghai Nonferrous Metals, 1999, 20(4), 193(in Chinese). 邓安华. 上海有色金属, 1999, 20(4), 193. 18 Massalski T B. Metallurgical and Materials Transactions A, 2002, 33(8), 2277. 19 Liu W Q, Zhong L M, Peng J C, et al. Rare Metal Materials and Engineering, 2011(7), 1216(in Chinese). 刘文庆, 钟柳明, 彭剑超, 等. 稀有金属材料与工程, 2011(7), 1216. 20 Hickman B S. Journal of Materials Science, 1969, 4(6), 554. 21 Wang J M. Solid state phase transformation behaviors in Zr-Cr-Fe alloy and the effect of Mo, Bi alloying elements. Ph. D. Thesis, Chongqing University, China, 2018 (in Chinese). 王建民. Zr-Cr-Fe合金固态相变行为及Mo, Bi合金元素的影响. 博士学位论文, 重庆大学, 2018. 22 Sankaran A, Bouzy E, Humbert M, et al. Acta Materialia, 2009, 57(4), 1230. 23 Cheng Z Q, Yang Z B, Qiu J, et al. Nuclear Power Engineering, 2017, 38(5), 132(in Chinese). 程竹青, 杨忠波, 邱军, 等. 核动力工程, 2017, 38(5), 132. 24 Qiu R S. Effect of processing technology and alloy composition on the second phase and phase transformation behavior of zirconium alloy. Ph. D. Thesis, Chongqing University, China, 2014 (in Chinese). 邱日盛. 加工工艺及合金成分对锆合金第二相和相变行为的影响. 博士学位论文, 重庆大学, 2014. 25 Zhang T J. Rare Metal Materials and Engineering, 1989(5), 77(in Chinese). 张廷杰. 稀有金属材料与工程, 1989(5), 77. 26 Prima F, Vermaut P, Texier G, et al. Scripta Materialia, 2006, 54(4), 645. 27 Hutter R V, Foote F W, Francis K C. Institute of Metals, 1956. 28 Bridgman P W. Collected Experimental Papers, 1964, 6, 3620. 29 Jayaraman A, Klement W, Kennedy G C. Physical Review, 1963, 131(2), 644. 30 Frost P, Parris W, Hirsch L, et al. Trans ASM, 1954, 46, 231. 31 Silcock J. Acta Metallurgica, 1958, 6(7), 481. 32 Zhao Y, Zhang J, Pantea C, et al. Physical Review B, 2005, 71(18), 184119. 33 Liu W, Li B, Wang L, et al. Journal of Applied Physics, 2008, 104(7), 123. 34 Kumar M A, Hilairet N, McCabe R J, et al. Acta Materialia, 2020, 185, 211. 35 Podolskiy A V, Bonarski B J, Setman D, et al. Materials Science Forum, 2010, 667-669, 433. 36 Zhilyaev A P, Sharafutdinov A V, Teresa P. Advanced Engineering Materials, 2010, 12(8), 754. 37 Zhang J, Zhao Y, Rigg P A, et al. Journal of Physics and Chemistry of Solids, 2007, 68(12), 2297. 38 Errandonea D, Somayazulu M, Häusermann D, et al. Physica B:Physics of Condensed Matter, 2005, 355(1), 116. 39 Rigg P A, Greeff C W, Knudson M D, et al. Journal of Applied Physics, 2009, 106(12), 245. 40 Perez-Prado M T, Sharafutdinov A, Zhilyaev A P. Materials Letters, 2010, 64(2), 211. 41 Zhilyaev A P, Galvez F, Sharafutdinov A, et al. Materials Science & Engineering A, 2010, 527(16-17), 3918. 42 Edalati K, Horita Z, Yagi S, et al. Materials Science & Engineering A, 2009, 523(1-2), 277. 43 Tittmann B, Hamilton D, Jayaraman A. Journal of Applied Physics, 1964, 35(3), 732. 44 Livingston J D, Schadler H W. Progress in Materials Science, 1963, 12, 185. 45 Neal D F, Barber A C, Woolcock A, et al. Acta Metallurgica, 1971, 19(2), 143. 46 Xia H, Duclos S J, Ruoff A L, et al. Physical Review Letters, 1990, 64(2), 204. 47 Xia H, Ruoff A L, Vohra Y K. Physical Review B, 1991, 44(18), 10374. 48 Aguayo A, Murrieta G, Coss R D. Physical Review B, 2002, 65(9), 092106. 49 Jomard G, Magaud L, Pasturel A. Philosophical Magazine B, 1998, 77(1), 67. 50 Usikov M, Zilbershtein V. Physica Status Solidi (a), 1973, 19(1), 53. 51 Sarath K M E. Scripta Metallurgica, 1982, 16(6), 717. 52 Gao L, Ding X, Lookman T. Applied Physics Letters, 2016, 109(3), 031912. 53 Silcock J M. Acta Metallurgica, 1958, 6(7), 481. 54 Trinkle D R, Hennig R G, Srinivasan S G, et al. Physical Review Letters, 2003, 91(2), 025701.