Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23020025-7    https://doi.org/10.11896/cldb.23020025
  金属与金属基复合材料 |
高压条件下锆及其合金ω相变研究进展
郑勇*, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫
中国核动力研究设计院先进核能全国重点实验室,成都 610041
Research Progress of High Pressure Induced ω Phase Transformation in Zirconium and Its Alloys
ZHENG Yong*, QIU Shaoyu, WEI Lianfeng, YANG Canxiang, WANG Yu, TIAN Darong, YAO Lifu
National Key Laboratory of Advance Nuclear Energy, Nuclear Power Institute of China, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 9961KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文综述了锆及其合金在高压环境静水压力条件下ω相变的研究进展,系统阐述了锆及其合金固态相变类别,包括马氏体相变、块状相变、第二相析出及ω相变的机理及析出行为,重点介绍了高压诱导ω相的相转变条件、相变对组织性能的影响及高压ω相形成机制的研究现状。从研究进展可知,当压力大于3 GPa时,高压将诱导锆合金中ω相的形成;当基体中存在ω相时,微观组织发生显著细化;当含有ω相的晶粒尺寸小于100 nm时,基体硬度及强度增大,塑性减小;ω相可显著提升锆合金的超导性能;目前高压ω相形成机制存在三类观点,分歧主要集中在中间相形成及α‖ω的取向关系。基于当前研究现状,本文指出了锆合金高压诱导ω相转变机理需进一步完善,并对后续锆合金ω相的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑勇
邱绍宇
魏连峰
杨灿湘
王宇
田大容
姚力夫
关键词:  锆合金  固态相变  剧烈塑性变形  ω相    
Abstract: In this paper, the research progress of ω phase transformation in zirconium and its alloys under high pressure hydrostatic pressure is reviewed. The types of solid-state phase transformation of zirconium and its alloys are systematically described, including martensitic phase transformation, bulk phase transformation, second phase precipitation and the mechanism and precipitation behavior of ω phase transformation. The phase transformation conditions induced by high pressure, the effect of phase transformation on microstructure and properties, and the research status of the formation mechanism of ω phase at high pressure are emphatically introduced. According to the research progress, when the pressure is greater than 3 GPa, the high pressure will induce the formation of ω phase in zirconium alloy. When ω phase exists in the matrix, the microstructure is significantly refined. When the grain size containing ω phase is less than 100 nm, the hardness and strength of the matrix increase, and the plasticity decreases. ω phase can significantly improve the superconductivity of zirconium alloy; at present, there are three kinds of views on the formation mechanism of high-pressure ω phase, and the differences mainly focus on the formation of mesophase and the orientation relationship of α‖ω. Based on the current research status, it is pointed out that the mechanism of ω phase transformation induced by high pressure of zirconium alloy needs to be further improved, and the future research direction of ω phase of zirconium alloy is prospected.
Key words:  zirconium alloy    solid state phase transformation    severe plastic deformation    ω phase
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG146.4  
基金资助: 国家重点研发计划(YS2022YFB190122);中核集团青年英才科研项目(JT233);中国核动力研究设计院原创基金(YC223)
通讯作者:  *郑勇,中国核动力研究设计院副研究员、硕士研究生导师。2018年西北工业大学材料加工工程专业博士毕业,毕业后到中国核动力研究设计院工作至今。目前主要从事核燃料及材料的研究工作。发表论文30余篇,包括Journal of Materials Science and Technology、Ceramics International、Journal of Alloys and Compounds、The International Journal of Advanced Manufacturing Technology、Archives of Civil and Mechanical Engineering等。npic_zhengy@126.com   
引用本文:    
郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
ZHENG Yong, QIU Shaoyu, WEI Lianfeng, YANG Canxiang, WANG Yu, TIAN Darong, YAO Lifu. Research Progress of High Pressure Induced ω Phase Transformation in Zirconium and Its Alloys. Materials Reports, 2024, 38(17): 23020025-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020025  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23020025
1 Zhao W J, Zhou B X, Miao Z, et al. Atomic Energy Science and Technology, 2005(S1), 2(in Chinese).
赵文金, 周邦新, 苗志, 等. 原子能科学技术, 2005(S1), 2.
2 Yong H J, Kyoung O L, Hyun G K. Journal of Nuclear Materials, 2002, 302(1), 9.
3 Qiu R S, Luan B F, Chai L J, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(6), 1605(in Chinese).
邱日盛, 栾佰峰, 柴林江, 等. 中国有色金属学报, 2012, 22(6), 1605.
4 Cheng L, Yang Z B, Miao Z, et al. Nuclear Power Engineering, 2012(S2), 39(in Chinese).
陈亮, 杨忠波, 苗志, 等. 核动力工程, 2012(S2), 39.
5 Wu Y C, Bai Y Q, Song Y, et al. Nuclear Science and Engineering, 2014(2), 201(in Chinese).
吴宜灿, 柏云清, 宋勇, 等. 核科学与工程, 2014(2), 201.
6 Deng Z M, Hong Y S, Zhu C, et al. Progress in Mechanics, 2003(01), 56(in Chinese).
邓忠民, 洪友士, 朱晨, 等. 力学进展, 2003(01), 56.
7 Zhang Z, Cui Z L, et al. Nanotechnology and nanomaterials, National Defense Industry Press, China, 2000 (in Chinese).
张志, 崔作林. 纳米技术与纳米材料, 国防工业出版社, 2000.
8 Gong A X, Xu C, An Z, et al. Materials Reports, 2024, 38(10), 23010111(in Chinese).
龚翱翔, 徐驰, 安瞻, 等. 材料导报, 2024, 38(10), 23010111.
9 Ruslan Z V, Rinat K I, Igor V A. Progress in Materials Science, 2000, 45(2), 103.
10 Ruslan Z V. Bulk nanostructured materials:fundamentals and applications, John Wiley & Sons, Inc, 2013.
11 Valiev R Z, Langdon T G. Progress in Materials Science, 2006, 51(7), 881.
12 Chino Y, Sassa K, Mabuchi M, et al. Scripta Materialia, 2008, 59(4), 399.
13 Saito Y, Utsunomiya H, Tsuji N, et al. Acta Materialia, 1999, 47(2), 579.
14 Zhang Y. High temperature and high pressure control of microstructure and mechanical properties of zirconium and its alloys. Ph. D. Thesis, Yanshan University, China, 2017(in Chinese).
张洋. 锆及其合金组织和机械性能的高温高压调控. 博士学位论文, 燕山大学, 2017.
15 Xin S W, Zhao Y Q, Zeng W D. Titanium Industry Progress, 2007(5), 28(in Chinese).
辛社伟, 赵永庆, 曾卫东. 钛工业进展, 2007(5), 28.
16 Chang H, Zhou L, Zhang T J. Rare Metal Materials and Engineering, 2007, 36(9), 1505(in Chinese).
常辉, 周廉, 张廷杰. 稀有金属材料与工程, 2007, 36(9), 1505.
17 Deng A H. Shanghai Nonferrous Metals, 1999, 20(4), 193(in Chinese).
邓安华. 上海有色金属, 1999, 20(4), 193.
18 Massalski T B. Metallurgical and Materials Transactions A, 2002, 33(8), 2277.
19 Liu W Q, Zhong L M, Peng J C, et al. Rare Metal Materials and Engineering, 2011(7), 1216(in Chinese).
刘文庆, 钟柳明, 彭剑超, 等. 稀有金属材料与工程, 2011(7), 1216.
20 Hickman B S. Journal of Materials Science, 1969, 4(6), 554.
21 Wang J M. Solid state phase transformation behaviors in Zr-Cr-Fe alloy and the effect of Mo, Bi alloying elements. Ph. D. Thesis, Chongqing University, China, 2018 (in Chinese).
王建民. Zr-Cr-Fe合金固态相变行为及Mo, Bi合金元素的影响. 博士学位论文, 重庆大学, 2018.
22 Sankaran A, Bouzy E, Humbert M, et al. Acta Materialia, 2009, 57(4), 1230.
23 Cheng Z Q, Yang Z B, Qiu J, et al. Nuclear Power Engineering, 2017, 38(5), 132(in Chinese).
程竹青, 杨忠波, 邱军, 等. 核动力工程, 2017, 38(5), 132.
24 Qiu R S. Effect of processing technology and alloy composition on the second phase and phase transformation behavior of zirconium alloy. Ph. D. Thesis, Chongqing University, China, 2014 (in Chinese).
邱日盛. 加工工艺及合金成分对锆合金第二相和相变行为的影响. 博士学位论文, 重庆大学, 2014.
25 Zhang T J. Rare Metal Materials and Engineering, 1989(5), 77(in Chinese).
张廷杰. 稀有金属材料与工程, 1989(5), 77.
26 Prima F, Vermaut P, Texier G, et al. Scripta Materialia, 2006, 54(4), 645.
27 Hutter R V, Foote F W, Francis K C. Institute of Metals, 1956.
28 Bridgman P W. Collected Experimental Papers, 1964, 6, 3620.
29 Jayaraman A, Klement W, Kennedy G C. Physical Review, 1963, 131(2), 644.
30 Frost P, Parris W, Hirsch L, et al. Trans ASM, 1954, 46, 231.
31 Silcock J. Acta Metallurgica, 1958, 6(7), 481.
32 Zhao Y, Zhang J, Pantea C, et al. Physical Review B, 2005, 71(18), 184119.
33 Liu W, Li B, Wang L, et al. Journal of Applied Physics, 2008, 104(7), 123.
34 Kumar M A, Hilairet N, McCabe R J, et al. Acta Materialia, 2020, 185, 211.
35 Podolskiy A V, Bonarski B J, Setman D, et al. Materials Science Forum, 2010, 667-669, 433.
36 Zhilyaev A P, Sharafutdinov A V, Teresa P. Advanced Engineering Materials, 2010, 12(8), 754.
37 Zhang J, Zhao Y, Rigg P A, et al. Journal of Physics and Chemistry of Solids, 2007, 68(12), 2297.
38 Errandonea D, Somayazulu M, Häusermann D, et al. Physica B:Physics of Condensed Matter, 2005, 355(1), 116.
39 Rigg P A, Greeff C W, Knudson M D, et al. Journal of Applied Physics, 2009, 106(12), 245.
40 Perez-Prado M T, Sharafutdinov A, Zhilyaev A P. Materials Letters, 2010, 64(2), 211.
41 Zhilyaev A P, Galvez F, Sharafutdinov A, et al. Materials Science & Engineering A, 2010, 527(16-17), 3918.
42 Edalati K, Horita Z, Yagi S, et al. Materials Science & Engineering A, 2009, 523(1-2), 277.
43 Tittmann B, Hamilton D, Jayaraman A. Journal of Applied Physics, 1964, 35(3), 732.
44 Livingston J D, Schadler H W. Progress in Materials Science, 1963, 12, 185.
45 Neal D F, Barber A C, Woolcock A, et al. Acta Metallurgica, 1971, 19(2), 143.
46 Xia H, Duclos S J, Ruoff A L, et al. Physical Review Letters, 1990, 64(2), 204.
47 Xia H, Ruoff A L, Vohra Y K. Physical Review B, 1991, 44(18), 10374.
48 Aguayo A, Murrieta G, Coss R D. Physical Review B, 2002, 65(9), 092106.
49 Jomard G, Magaud L, Pasturel A. Philosophical Magazine B, 1998, 77(1), 67.
50 Usikov M, Zilbershtein V. Physica Status Solidi (a), 1973, 19(1), 53.
51 Sarath K M E. Scripta Metallurgica, 1982, 16(6), 717.
52 Gao L, Ding X, Lookman T. Applied Physics Letters, 2016, 109(3), 031912.
53 Silcock J M. Acta Metallurgica, 1958, 6(7), 481.
54 Trinkle D R, Hennig R G, Srinivasan S G, et al. Physical Review Letters, 2003, 91(2), 025701.
[1] 范晓燕, 赵雪婷, 欧志强. 塑晶材料及其压卡效应研究发展与展望[J]. 材料导报, 2024, 38(5): 22080087-8.
[2] 王亚恒, 左家栋, 王亚强, 张金钰, 吴凯, 刘刚, 孙军. 事故容错锆包壳表面FeCrAl合金涂层的研究进展[J]. 材料导报, 2024, 38(12): 22110325-11.
[3] 宋欣, 贾文涛, 李健, 周相龙, 马天宇. 2∶17型钐钴永磁材料的相变机制研究新进展[J]. 材料导报, 2023, 37(3): 22120078-9.
[4] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[5] 全琪炜, 刘向兵, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 吴奕初, 赵文增. 辐照后锆合金腐蚀与第二相非晶化研究概况[J]. 材料导报, 2022, 36(Z1): 21010255-6.
[6] 杨健乔, 恽迪, 刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报, 2022, 36(1): 20080283-12.
[7] 屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
[8] 滕树满, 滕海灏. 等通道挤压制备铝基细晶材料的研究进展[J]. 材料导报, 2020, 34(Z1): 345-350.
[9] 王鹏, 张卫刚, 孙旭东. 锆在硫酸提浓工艺中的腐蚀研究[J]. 材料导报, 2020, 34(Z1): 385-389.
[10] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[11] 杨振飞, 史鹏, 敖冰云. 锆合金中的氢化物脱附行为研究进展[J]. 材料导报, 2020, 34(5): 5102-5108.
[12] 胡号旗,许赪,杨丽景,张恒华,宋振纶. 高强高导铜铬锆合金的最新研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 453-460.
[13] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[14] 林成, 于佳石, 尹桂丽, 张爱民, 赵志伟, 黄士星, 赵永庆, 郭丽丽. 钛合金中ω相变的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 72-76.
[15] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed