Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20080283-12    https://doi.org/10.11896/cldb.20080283
  金属与金属基复合材料 |
铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展
杨健乔1,2, 恽迪1, 刘俊凯1
1 西安交通大学能源与动力工程学院,西安 710049
2 卡尔斯鲁厄理工学院应用材料系,卡尔斯鲁厄 76344
Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding
YANG Jianqiao1,2, YUN Di1, LIU Junkai1
1 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe 76344, Germany
下载:  全 文 ( PDF ) ( 8971KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当前核燃料包壳主要以热中子吸收截面极低、熔点较高的锆合金作为主要构件材料。2011年日本福岛核电站失水事故使人们意识到锆合金在事故工况高温蒸汽环境中会快速氧化失效,并产生氢气造成氢爆。为了应对锆合金包壳材料的这一缺陷,提升核反应堆安全性,耐事故燃料(Accident tolerant cladding, ATF)包壳材料的开发成为了当前研究热点。   在锆合金表面制备涂层以提高其抗氧化性能是ATF包壳开发的重要发展方向之一。目前已开发了多种针对锆合金的涂层材料,包括纯金属涂层、MAX相涂层、合金涂层以及氧化物涂层等。在众多涂层材料中,纯铬涂层能有效提升锆合金包壳的抗高温氧化性能和高温强度,且涂层加工方法简单、经济性良好。铬涂层是极具应用潜力的候选材料,也是当前的研究热点。   本文以铬涂层锆合金耐事故燃料包壳材料的事故工况为主题,综述了铬涂层的氧化动力学、铬-锆中间层生长动力学、铬涂层长期氧化失效机制、诱发铬涂层短期快速失效的因素以及涂层强化机制方面的研究进展,汇总了国内外目前在ATF包壳领域取得的进展,为铬涂层锆合金耐事故燃料包壳材料的基础理论研究、关键技术攻关和未来商业应用提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨健乔
恽迪
刘俊凯
关键词:    涂层  锆合金  包壳  耐事故燃料    
Abstract: At present, zirconium alloy with a very low neutron absorption cross section and a high melting point is used as the main component material for nuclear fuel cladding. The Fukushima-Daiichi accident in 2011 made people realize that the zirconium alloy can be degraded very fast in extremely high temperature environment. In order to resist the potential risk of fuel cladding and improve the safety of the nuclear plants, the research on effective and reliable cladding materials for accident tolerant fuel(ATF) system has become the current research hotspot. Preparing a coating on the zirconium alloy surface is one of the adequate methods to improve the oxidation performance of ATF cladding. Se-veral kinds of coating materials were chosen as potential coating materials, including metals, MAX phases, alloys and oxides. Among various coatings under development, Cr coating can effectively improve the high temperature oxidation resistance and high temperature strength of zirconium alloy. Moreover, the Cr coating is relatively easy and cheap to be produced. In a word, the Cr coating is one of the most promising coating materials for ATF, which many researchers focus on now. In this paper, the research progress on the oxidation kinetics of Cr coating, the growth kinetics of Cr-Zr intermediate layer, the long-term oxidation failure mechanism of Cr coating, the factors that lead to the rapid failure of Cr coating and the coating strengthening mechanism from the research around the world are reviewed. This paper can give the cutting edge information on the basic research, the tackle problems in key technologies and the commercialization of the Cr coating ATF cladding materials.
Key words:  chromium    coating    zirconium alloy    cladding    accident tolerant fuel
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TL352.1  
基金资助: 中国留学基金委员会资助项目(201906280319)
通讯作者:  diyun1979@xjtu.edu.cn   
作者简介:  杨健乔,2021年3月毕业于西安交通大学,获得工学博士学位,现为西安交通大学能源与动力工程学院助理教授。主要研究领域包括涂层型事故容错燃料、镍基合金在超临界水中的腐蚀行为及超临界水氧化技术等。
恽迪,西安交通大学教授,博士研究生导师。2001年本科毕业于清华大学工程物理系,2010年5月获美国伊利诺伊大学香槟分校博士学位。2010年6月至2015年8月,担任美国阿贡国家实验室工程师。2015年9月起归国就任于西安交通大学核科学与技术学院,入选2016年中组部青年千人学者,2017年陕西省百人计划等。主要从事核能相关的研究工作,研究方向涉及核燃料与材料的实验表征、事故容错核燃料开发以及核燃料性能仿真、裂变气体行为分析等,发表SCI论文近40篇。
引用本文:    
杨健乔, 恽迪, 刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报, 2022, 36(1): 20080283-12.
YANG Jianqiao, YUN Di, LIU Junkai. Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding. Materials Reports, 2022, 36(1): 20080283-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080283  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20080283
[1] Terrani K A, Zinkle S J, Snead L L. Journal of Nuclear Materials, 2014, 448, 420.
[2] Ott L J, Robb K R, Wang D. Journal of Nuclear Materials, 2014, 448, 520.
[3] Robb K R. In: Conference Record of the 6th International Topical Mee-ting on Nuclear Reactor Thermalhydraulics. Chicago, 2015, pp. 1213328.
[4] Farmer M T, Leibowitz L, Terrani K A, et al. Journal of Nuclear Mate-rials, 2014, 448, 534.
[5] Merrill B J, Bragg-Sitton S M, Humrickhouse P W. Nuclear Engineering and Design, 2017, 315, 170.
[6] Yao M Y, Li S L, Zhang X, et al. Acta Metallurgica Sinica, 2011, 47(7), 865(in Chinese)
姚美意, 李士炉, 张欣, 等. 金属学报, 2011, 47(7), 865.
[7] Yao M Y, Zhou B X, Li Q, et al. Shanghai Metals, 2008(6), 1(in Chinese)
姚美意, 周邦新, 李强, 等. 上海金属, 2008(6), 1.
[8] Liu J K, Zhang X H, Yun D. Materials Reports A:Review Papers. 2018, 32(11), 1757(in Chinese).
刘俊凯, 张新虎, 恽迪. 材料导报:综述篇, 2018, 32(11), 1757.
[9] Brachet J, Guilbert T, Le Saux M, et al. In: Conference Record of the Topfuel 2018.Prague,2018.https:∥hal.archives-ouvertes.fr/cea-02328975.
[10] Han X, Xue J, Peng S, et al. Corrosion Science, 2019, 156, 117.
[11] Kim H G, Kim I H, Jung Y I, et al. In: Proceeding of LWR Fuel Performance Meeting. USA, 2013, pp. 842.
[12] Wei T, Zhang R, Yang H, et al. Corrosion Science, 2019, 158, 108077.
[13] Yeom H, Maier B, Johnson G, et al. Journal of Nuclear Materials, 2019, 526, 151737.
[14] Tang C, Klimenkov M, Jaentsch U, et al. Surface and Coatings Techno-logy, 2017, 309, 445.
[15] Tang C, Steinbrück M, Groe M, et al. Journal of Nuclear Materials, 2017, 490, 130.
[16] Tang C, Steinbrueck M, Stueber M, et al. Corrosion Science, 2018, 135, 87.
[17] Gigax J G, Kennas M, Kim H, et al. Journal of Nuclear Materials, 2019, 523, 26.
[18] Tunes M A, Harrison R W, Donnelly S E, et al. Acta Materialia, 2019, 169, 237.
[19] Kim J M, Ha T H, Kim I H, et al. Metals, 2017, 7(2), 59.
[20] Kim J M, Ha T H, Park J S, et al. Metals, 2016, 6(2), 29.
[21] Lenling M, Yeom H, Maier B, et al. JOM Journal of the Minerals Metals and Materials Society, 2019, 71, 2868.
[22] Massey C P, Terrani K A, Dryepondt S N, et al. Journal of Nuclear Materials, 2016, 470, 128.
[23] Krejcˇí J, evecˇek M, Cvrcek L, et al. In: Proceedings of the 20th International Corrosion Congress. Prague, 2017.
[24] Jung Y I, Kim H G, Guim H U, et al. Applied Surface Science, 2018, 429, 272.
[25] Sidelev D V, Bleykher G A, Krivobokov V P, et al. Surface and Coa-tings Technology, 2016, 308, 168.
[26] Brachet J C, Le Saux M, Lezaud-Chaillioux V, et al. In:Conference Record of the Topfuel 2016-Light Water Reactor (LWR) Fuel Performance Meeting. Boise, 2016,pp.1173.
[27] Park J H, Kim H G, Park J Y, et al. Surface and Coatings Technology, 2015, 280, 256.
[28] Brachet J C, Idarraga-Trujillo I, Le Flem M, et al. Journal of Nuclear Materials, 2019, 517, 268.
[29] Brachet J C, Rouesne E, Ribis J, et al. Corrosion Science, 2020, 167, 108537.
[30] Michau A, Gazal Y, Addou F, et al. Surface and Coatings Technology, 2019, 375, 894.
[31] Michau A, Maury F, Schuster F, et al. Applied Surface Science, 2017, 422, 198.
[32] Michau A, Maury F, Schuster F, et al. Surface and Coatings Technology, 2017, 332, 96.
[33] Michau A, Maury F, Schuster F, et al. Surface and Coatings Technology, 2018, 349, 1048.
[34] Michau A, Maury F, Schuster F, et al. Coatings, 2018, 8(6), 220
[35] Park D J, Kim H G, Jung Y I, et al. Journal of Nuclear Materials, 2016, 482, 75.
[36] Hu X, Dong C, Wang Q, et al. Journal of Nuclear Materials, 2019, 519, 145.
[37] Wang Y, Zhou W, Wen Q, et al. Surface and Coatings Technology, 2018, 344, 141.
[38] Maier B R, Yeom H, Johnson G, et al. Journal of Nuclear Materials, 2018, 512, 320.
[39] evecˇek M, Gurgen A, Seshadri A, et al. Nuclear Engineering and Technology, 2018, 50, 229.
[40] Royer L, Ledoux X, Mathieu S, et al. Oxidation of Metals, 2010, 74, 79.
[41] Kim H G, Kim I H, Jung Y I, et al. Journal of Nuclear Materials, 2015, 465, 531.
[42] He X, Tian Z, Shi B, et al. Annals of Nuclear Energy, 2019, 132, 243.
[43] Ribis J, Wu A, Brachet J C, et al. Journal of Materials Science, 2018, 53, 9879.
[44] Wu A, Ribis J, Brachet J C, et al. Journal of Nuclear Materials, 2018, 504, 289.
[45] Sigle W, Krmer S, Varshney V, et al. Ultramicroscopy, 2003, 96, 565.
[46] Vander Sande J B, Bement A L. Journal of Nuclear Materials, 1974, 52(1), 115.
[47] Saporiti F, Bozzano P, Versaci R, et al. Hyperfine Interactions, 2002, 139, 379.
[48] Laves F. Theory of alloy phases, American Society for Metals, USA, 1955, pp. 232.
[49] Zhu J, Liu C, Liaw P. Intermetallics, 1999, 7, 1011.
[50] Xiang W, Ying S. China Nuclear Information Centre, 2001, 33(20).https:∥www.osti.gov/etdeweb/biblio/20247728.
[51] Nicolai L, De Tendler R. Journal of Nuclear Materials, 1979, 82, 439.
[52] Mehrer H. New Series Group III, 1990, 26, 747.
[53] Yeom H, Dabney T, Johnson G, et al. The International Journal of Advanced Manufacturing Technology, 2019, 100, 1373.
[54] Gong W, Zhang H, Wu C, et al. Corrosion Science, 2013, 77, 391.
[55] Neumann G, Tuijnc.In: Self-diffusion and Impurity Diffusion in Pure Metals. Elsevier, UK, 2011, pp. 69.
[56] Balart S, Varela N, De Tendler R. Journal of Nuclear Materials, 1983, 119, 59.
[57] Krejcˇí J, Kabátová J, Manoch F, et al. Nuclear Engineering and Technology, 2020, 52, 597.
[58] Leistikow S, Schanz G. Nuclear Engineering and Design, 1987, 103, 65.
[59] Dupin N, Ansara I, Servant C, et al. Journal of Nuclear Materials, 1999, 275, 287.
[60] Andersson J O. International Journal of Thermophysics, 1985, 6, 411.
[61] Domagala R, Mcpherson D. JOM Journal of the Minerals Metals and Materials Society, 1954, 6, 238.
[62] Steinbrück M, Bttcher M. Journal of Nuclear Materials, 2011, 414, 276.
[63] Urbanic V, Heidrick T. Journal of Nuclear Materials, 1978, 75(2), 251.
[64] D'auria F, Dusic M, Dutton L, et al. IAEA Specific Safety Guide, IAEA, Austria, 2009,pp.8.
[65] Terrani K A, Parish C M, Shin D, et al. Journal of Nuclear Materials, 2013, 438, 64.
[66] Steinbrück M, Groe M, Sepold L, et al. Nuclear Engineering and Design, 2010, 240, 1714.
[67] Cheng B, Chou P, Kim Y J. In: Conference Record of 2014 Water Reactor Fuel Performance Meeting. Sendai, 2014, pp. 784.
[68] Cheng B. Atw Internationale Zeitschrift fuer Kernenergie, 2013, 58(3), 158.
[69] Kim H G, Kim I H, Park J Y, et al. In: Conference Record of Zirconium in the Nuclear Industry: 17th International Symposium. West Conshohocken, 2014, pp. 346.
[70] Li R, Liu T. Nuclear Power Engineering, 2019, 40(4), 74(in Chinese)
李锐, 刘彤. 核动力工程, 2019, 40(4), 74.
[71] Yang Z, Niu Y, Xue J, et al. Materials and Corrosion, 2019, 70, 37.
[72] Brova M J, Alat E, Pauley M A, et al. Surface and Coatings Technology, 2017, 331, 163.
[73] Kim H G, Kim I H, Jung Y I, et al. Journal of Nuclear Materials, 2018, 510, 93.
[74] Hu X G, Dong C, Chen B Q, et al. Surface Technology, 2019, 48(2), 217(in Chinese).
胡小刚, 董闯, 陈宝清, 等. 表面技术, 2019, 48(2), 217.
[75] Duan Z, Yang H, Satoh Y, et al. Nuclear Engineering and Design, 2017, 316, 131.
[76] Shewfelt R. Research Mechanica, 1988, 25, 261.
[77] Veshchunov M, Shestak V. Journal of Nuclear Materials, 2015, 461, 129.
[78] Steinbrück M, Birchley J, Boldyrev A V, et al. Progress in Nuclear Energy, 2010, 52, 19.
[79] Billone M, Yan Y, Burtseva T, et al. Cladding embrittlement during postulated loss-of-coolant accidents. Argonne National Lab, USA, 2008, pp. 17.
[80] Bischoff J, Delafoy C, Chaari N, et al. Top Fuel, 2018, 2018, A0152.
[81] Bischoff J, Delafoy C, Vauglin C, et al. Nuclear Engineering and Technology, 2018, 50, 223.
[82] Xiao W, Chen H, Liu X, et al. Journal of Nuclear Materials, 2019, 526, 151777.
[83] Xiao W, Deng H, Zou S, et al. Journal of Nuclear Materials, 2018, 509, 542.
[84] Gautier C, Machet J. Thin Solid Films, 1996, 289, 34.
[85] Sarakinos K, Alami J, Konstantinidis S. Surface and Coatings Technology, 2010, 204, 1661.
[86] Anders A. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2010, 28, 783.
[87] Samuelsson M, Lundin D, Jensen J, et al. Surface and Coatings Techno-logy, 2010, 205, 591.
[88] Musil J, Rajsky A, Bell A, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1996, 14, 2187.
[89] Billard A, Mercs D, Perry F, et al. Surface and Coatings Technology, 1999, 116-119, 721.
[90] Cormier P A, Thomann A L, Dolique V, et al. Thin Solid Films, 2013, 545, 44.
[91] Petrov I, Barna P B, Hultman L, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, 2003, 21, 117.
[92] Grudinin V A, Bleykher G A, Sidelev D V, et al. Surface and Coatings Technology, 2019, 375, 352.
[93] Gigax J G, Kennas M, Kim H, et al. Journal of Nuclear Materials, 2019, 519, 57.
[94] Fan S Q, Yang G J, Li C, et al. Journal of Thermal Spray Technology, 2006, 15, 513.
[95] Girardin G, Meier R, Jatuff F, et al. In: Conference Record of TopFuel 2018. Prague, 2018.
[96] Tang C, Jianu A, Steinbrueck M, et al. Journal of Nuclear Materials, 2018, 511, 496.
[97] Tunes M A, Da Silva F C, Camara O, et al. Journal of Nuclear Mate-rials, 2018, 512, 239.
[98] Tunes M A, Vishnyakov V M, Camara O, et al. Materials Today Energy, 2019, 12, 356.
[99] Sidelev D V, Bleykher G A, Bestetti M, et al. Vacuum, 2017, 143, 479.
[100] Sidelev D V, Kashkarov E B, Syrtanov M S, et al. Surface and Coatings Technology, 2019, 369, 69.
[101] Heuser B J, Stubbins J, Kozlowski T, et al.Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel. USDOE Office of Nuclear Energy. USA, 2017,pp.56.
[102] Tallman D J, Hoffman E N, Caspi E N, et al. Acta Materialia, 2015, 85, 132.
[103] Alat E, Motta A T, Comstock R J, et al. Surface and Coatings Techno-logy, 2015, 281, 133.
[104] Alat E, Motta A T, Comstock R J, et al. Journal of Nuclear Materials, 2016, 478, 236.
[105] Park D J, Kim H G, Park J Y, et al. Corrosion Science, 2015, 94, 459.
[106] Park D J, Kim H G, Jung Y I, et al. Fusion Engineering and Design, 2019, 139, 81.
[107] Jeong-Min K, Tae-Hyung H, Joon-Sik P, et al. Transactions of Nonferrous Metals Society of China, 2016, 26, 2603.
[108] Jung Y I, Kim H G, Kim I H, et al. Journal of Nuclear Materials, 2014, 455, 586.
[109] Huang H, Qiu C J, Chen Y, et al. China Surface Engineering, 2018, 31(2), 51(in Chinese).
黄鹤, 邱长军, 陈勇, 等. 中国表面工程, 2018, 31(2), 51.
[1] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[2] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[3] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[4] 陈昌隆, 赵宜妮, 李玉阁. 液体高速冲蚀与防护涂层研究现状[J]. 材料导报, 2021, 35(z2): 361-366.
[5] 张凯, 桂泰江, 吴连锋, 丛巍巍, 吕钊. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(z2): 550-553.
[6] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[7] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[8] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[9] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[10] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[11] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[12] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[13] 李丹, 李书良, 柴玉琨, 刘健, 林震霞. 燃料包壳管超声波幅与缺陷深度对应关系[J]. 材料导报, 2021, 35(Z1): 473-475.
[14] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[15] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed