Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22050212-10    https://doi.org/10.11896/cldb.22050212
  金属与金属基复合材料 |
高压扭转变形诱导的非均匀微观结构演化
张子瑜1,*, 刘艳芳2, 李玉胜2, 曹阳2,*
1 苏州健雄职业技术学院,江苏 苏州 215411
2 南京理工大学材料科学与工程学院,纳米异构材料中心,南京 210094
Heterogeneous Microstructural Evolution Induced by High-pressure Torsion
ZHANG Ziyu1,*, LIU Yanfang2, LI Yusheng2, CAO Yang2,*
1 Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, Jiangsu, China
2 Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 11216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高压扭转变形可以在数个吉帕的压强条件下对金属材料施加理论上无上限的应变量,可以有效地将粗晶材料细化成超细晶甚至是纳米晶材料,是迄今为止极高效的制备块体纳米金属材料的技术之一。然而,其碟形的样品设计和扭转式的应变施加方式导致了材料塑性变形时复杂且非常不均匀的微观结构演化,进而影响了变形后材料的力学性能及后续的使用和再加工。因此,深入理解高压扭转变形导致的微观结构不均匀性,对该技术的研发、变形材料的工业化应用以及后续的加工工艺设计有着重要的指导意义。本文基于双相材料中应变视觉化的实验成果,介绍并分析了金属材料的非均匀结构演化机制和约束条件下的塑性失稳现象,归纳总结了宏观应变梯度和微观应变梯度对微观结构演化和塑性失稳的决定性作用,最后对高压扭转技术制备纳米材料的应用与发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张子瑜
刘艳芳
李玉胜
曹阳
关键词:  剧烈塑性变形  微观结构  变形机制  金属材料  异构材料  纳米材料    
Abstract: High-pressure torsion (HPT) can impose a high pressure of a few gigapascal and theoretically unlimited strain to metallic materials. As a result, HPT can effectively refine the grain sizes of metallic materials to ultrafine-grained regime and even nanocrystalline regime. Therefore, HPT is considered one of the most effective methods for processing bulk nanostructured materials. However, owing to the disk-shaped specimen used and the torsional strain imposed by HPT, heterogeneous microstructural evolution is induced in the metallic materials. The microstructural heterogeneity has a direct impact on the mechanical properties of materials. Therefore, in-depth understanding about heterogeneous microstructural evolution induced by HPT is crucial for the future development of HPT related techniques and applications of the materials processed by HPT. In the review, the representative shear strain patterns induced by HPT are reassessed; microscopic heterogeneities and plastic instabilities abound in the microstructural evolution processes are discussed; the concept of strain gradient plasticity has been adopted to explain the heterogeneous microstructural evolution. Finally, we prospect the application and development of HPT related techniques for processing nanostructured and hetero-structured materials.
Key words:  severe plastic deformation    microstructure    deformation mechanism    metallic material    hetero-structured material    nanostructured material
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TG14  
基金资助: 国家自然科学基金(52071181)
通讯作者:  * 张子瑜,苏州健雄职业技术学院副教授,博士。1996年西安理工大学机械制造专业硕士毕业,1999年上海交通大学动力工程学院机械设计与制造专业博士毕业,目前主要研究领域为智能制造技术、材料结构分析。发表论文30余篇。0434@csit.edu.cn;曹阳,南京理工大学材料科学与工程学院副教授、硕士研究生导师。2007年澳大利亚悉尼大学航天、机械与机电一体化工程学院机械工程系机械工程专业本科毕业,2013年澳大利亚悉尼大学材料科学与工程专业博士毕业,2016年澳大利亚新南威尔士大学博士后出站到南京理工大学工作至今。目前主要从事异质纳米结构材料和电子显微学分等方面的研究工作。发表论文50余篇,包括Materials Science and Engineering R: Reports、Science Advances、Acta Materialia、Scripta Materialia、International Journal of Plasticity等。y.cao@njust.edu.cn   
引用本文:    
张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
ZHANG Ziyu, LIU Yanfang, LI Yusheng, CAO Yang. Heterogeneous Microstructural Evolution Induced by High-pressure Torsion. Materials Reports, 2023, 37(23): 22050212-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050212  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22050212
1 Gleiter H. Progress in Materials Science, 1989,33(4),223.
2 Weertman J R. Materials Science and Engineering A, 1993,166(1-2),161.
3 Zhu Y, Ameyama K, Anderson P M, et al. Materials Research Letters, 2021,9(1),1.
4 Ma E, Zhu T. Materials Today, 2017,20(6),323.
5 Valiev R Z, Estrin Y, Horita Z, et al. The Journal of the Minerals, Me-tals & Materials Society (TMS), 2006,58(4),33.
6 Zhu Y T, Liao X Z, Wu X L. Progress in Materials Science, 2012,57(1),1.
7 Cao Y, Ni S, Liao X Z, et al. Materials Science and Engineering, R, Reports, 2018,133,1.
8 Nieman G W, Weertman J R, Siegel R W. Scripta Metallurgica, 1989,23(12),2013.
9 Cui B Z, Han K, Xin Y, et al. Acta Materialia, 2007,55(13),4429.
10 Liao X Z, Kilmametov A R, Valiev R Z, et al. Applied Physics Letters, 2006,88(2),021909.
11 Valiev R Z, Langdon T G. Progress in Materials Science, 2006,51(7),881.
12 Zhilyaev A P, Langdon T G. Progress in Materials Science, 2008,53(6),893.
13 Valiev R Z, Islamgaliev R K, Alexandrov I V. Progress in Materials Science, 2000,45(2),103.
14 Ni S, Liao X Z, Zhu Y T. Acta Metallurgica Sinica, 2014, 50(2), 156 (in Chinese).
倪颂 廖晓舟, 朱运田.金属学报, 2014,50(2), 156.
15 Estrin Y, Molotnikov A, Davies C H J, et al. Journal of the Mechanics and Physics of Solids, 2008,56(4),1186.
16 An X H, Wu S D, Wang Z G, et al. Progress in Materials Science, 2019,101,1.
17 Meyers M A, Mishra A, Benson D J. Progress in Materials Science, 2006,51(4),427.
18 Ovid'ko I A, Valiev R Z, Zhu Y T. Progress in Materials Science, 2018,94,462.
19 Edalati K, Matsuda J, Iwaoka H, et al. International Journal of Hydrogen Energy, 2013,38(11),4622.
20 Jamalian M, Hamid M, De Vincentis N, et al. Materials Science and Engineering A, 2019,756,142.
21 Yilmazer H, Niinomi M, Nakai M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2012,10,235.
22 Yoshida S, Ikeuchi T, Bhattacharjee T, et al. Acta Materialia, 2019,171,201.
23 Schuh B, Mendez-Martin F, Volker B, et al. Acta Materialia, 2015,96,258.
24 Yoshida S, Bhattacharjee T, Bai Y, et al. Scripta Materialia, 2017,134,33.
25 Sathiyamoorthi P, Moon J, Bae J W, et al. Scripta Materialia, 2019,163,152.
26 Edalati K, Horita Z, Langdon T G. Scripta Materialia, 2009,60(1),9.
27 Jiang W, Zhou H, Cao Y, et al. Advanced Engineering Materials, 2020,22(1),1900477.
28 Cao Y, Wang Y B, Figueiredo R B, et al. Acta Materialia, 2011,59(10),3903.
29 Cao Y, Wang Y B, Alhajeri S N, et al. Journal of Materials Science, 2010,45(3),765.
30 Figueiredo R B, de Faria G C V, Cetlin P R, et al. Journal of Materials Science, 2013,48(13),4524.
31 Zhang P, Li S X, Zhang Z F. Materials Science and Engineering A, 2011,529,62.
32 Zhang H W, Huang X, Hansen N. Acta Materialia, 2008,56(19),5451.
33 Jiang W, Yuan S, Cao Y, et al. Acta Materialia, 2021,213,116982.
34 Zhilyaev A P, Nurislamova G V, Kim B K, et al. Acta Materialia, 2003,51(3),753.
35 Cao Y, Kawasaki M, Wang Y B, et al. Journal of Materials Science, 2010,45(17),4545.
36 Tian Y Z, An X H, Wu S D, et al. Scripta Materialia, 2010,63(1),65.
37 Pouryazdan M, Kaus B J P, Rack A, et al. Nature Communications, 2017,8(1),1611.
38 Cao Y, Wang Y B, An X H, et al. Acta Materialia, 2014,63,16.
39 Huang Y, Kawasaki M, Langdon T G. Journal of Materials Science, 2013,48(13),4533.
40 Huang Y, Kawasaki M, Langdon T G. Advanced Engineering Materials, 2013,15(8),747.
41 Tian Y Z, Wu S D, Zhang Z F, et al. Acta Materialia, 2011,59(7),2783.
42 Christian J W, Mahajan S. Progress in Materials Science, 1995,39(1-2),1.
43 Huang Z, Cao Y, Nie J, et al. Materials, 2018,11(3),366.
44 Ashby M F. Philosophical Magazine, 1970,21(170),399.
45 Valiev R Z, Estrin Y, Horita Z, et al. Materials Research Letters, 2016,4(1),1.
46 Wang Y B, Ho J C, Liao X Z, et al. Applied Physics Letters, 2009,94(1),011908.
47 Ke M, Hackney S A, Milligan W W, et al. Nanostructured Materials, 1995,5(6),689.
48 Wang Y B, Ho J C, Cao Y, et al. Applied Physics Letters, 2009,94(9),091911.
49 Shan Z, Stach E A, Wiezorek J M K, et al. Science, 2004,305(5684),654.
50 Yamakov V, Wolf D, Phillpot S R, et al. Nature Materials, 2002,1(1),45.
51 Korznikova E A, Mironov S Y, Korznikov A V, et al. Materials Science and Engineering, A, 2012,556,437.
52 Naghdy S, Kestens L, Hertelé S, et al. Materials Characterization, 2016,120,285.
53 Li X, Wei Y, Yang W, et al. Proceedings of the National Academy of Sciences, 2009,106(38),16108.
54 Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Acta Materialia, 2012,60(11),4370.
55 Cao Y, Wang Y B, Liao X Z, et al. Applied Physics Letters, 2012,101(23),231903.
56 Hodge A M, Furnish T A, Shute C J, et al. Scripta Materialia, 2012,66(11),872.
57 Huang Q, Yu D, Xu B, et al. Nature, 2014,510(7504),250.
58 Lu L, Chen X, Huang X, et al. Science, 2009,323(5914),607.
59 Cao Y, Wang Y B, Chen Z B, et al. Materials Science and Engineering, A, 2013,578(0),110.
60 Armstrong R W, Zerilli F J. Mechanics of Materials, 1994,17(2),319.
61 Wang Y B, Li B Q, Sui M L, et al. Applied Physics Letters, 2008,92(1),011903.
62 Rupert T J, Gianola D S, Gan Y, et al. Science, 2009,326(5960),1686.
63 Sabirov I, Estrin Y, Barnett M R, et al. Acta Materialia, 2008,56(10),2223.
64 Upmanyu M, Srolovitz D J, Lobkovsky A E, et al. Acta Materialia, 2006,54(7),1707.
65 Sauvage X, Wilde G, Divinski S V, et al. Materials Science and Engineering A, 2012,540,1.
66 Wang L, Teng J, Liu P, et al. Nature Communications, 2014,5,4402.
67 Liu Y, Wang F, Cao Y, et al. Scripta Materialia, 2019,162,316.
68 Hu J, Shi Y N, Sauvage X, et al. Science, 2017,355(6331),1292.
69 Ni S, Wang Y B, Liao X Z, et al. Materials Science and Engineering A, 2011,528(13-14),4807.
70 Gao H, Huang Y, Nix W D, et al. Journal of the Mechanics and Physics of Solids, 1999,47(6),1239.
71 Jakobsen B, Poulsen H F, Lienert U, et al. Science, 2006,312(5775),889.
72 Mohamed F A, Dheda S S. Materials Science and Engineering A, 2012,558,59.
73 Vorhauer A, Pippan R. Scripta Materialia, 2004,51(9),921.
74 Yoo M H, Agnew S R, Morris J R, et al. Materials Science and Enginee-ring, A, 2001,319-321,87.
75 Zhu Y T, Wu X L. Materials Research Letters, 2019,7(10),393.
76 Park H K, Ameyama K, Yoo J, et al. Materials Research Letters, 2018,6(5),261.
77 Cong Z H, Jia N, Sun X, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2009,40A(6),1383.
78 Wang Y B, Louie M, Cao Y, et al. Scripta Materialia, 2010,62(4),214.
79 Šedá P, Ostapovets A, Jäger A, et al. Philosophical Magazine, 2012,92(10),1223.
80 Bonarski B J, Schafler E, Mingler B, et al. Journal of Materials Science, 2008,43(23),7513.
81 Sauvage X, Genevois C, Da Costa G, et al. Scripta Materialia, 2009,61(6),660.
82 Mine Y, Tachibana K, Horita Z. Metallurgical and Materials Transactions A, 2010,41(12),3110.
83 Tavares S S M, Gunderov D, Stolyarov V, et al. Materials Science and Engineering, A, 2003,358(1),32.
84 Cepeda-Jimenez C M, Garcia-Infanta J M, Zhilyaev A P, et al. Journal of Alloys and Compounds, 2011,509(3),636.
85 Mazilkin A A, Straumal B B, Rabkin E, et al. Acta Materialia, 2006,54(15),3933.
86 Mazilkin A A, Abrosimova G E, Protasova S G, et al. Journal of Mate-rials Science, 2011,46(12),4336.
87 Revesz A, Schafler E, Kovacs Z. Applied Physics Letters, 2008,92(1),011910.
88 Wang Y B, Zhao Y H, Lian Q, et al. Scripta Materialia, 2010,63(6),613.
89 Pérez-Prado M T, Zhilyaev A P. Physical Review Letters, 2009,102(17),175504.
90 Figueiredo R B, Sicupira F L, Malheiros L R C, et al. Materials Science and Engineering, A, 2015,625,114.
91 Johnson P C, Stein B A, Davis R S. Journal of Applied Physics, 1962,33(2),557.
92 Giles P M, Marder A R. Metallurgical Transactions, 1971,2(5),1371.
93 Liu Y, Cao Y, Mao Q, et al. Acta Materialia, 2020,189,129.
94 Wu X L, Yang M X, Yuan F P, et al. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(47),14501.
95 Lu K. Science, 2014,345(6203),1455.
96 Wu X, Jiang P, Chen L, et al. Proceedings of the National Academy of Sciences, 2014,111(20),7197.
97 Lin K, Li Z, Liu Y, et al. Scripta Materialia, 2022,209,114390.
98 Kawasaki M, Langdon T G. Journal of Materials Science, 2016,51(1),19.
99 Naderi M, Peterlechner M, Divinski S V, et al. Materials Science and Engineering A, 2017,708,171.
100 Hegedus Z, Gubicza J, Szommer P, et al. Journal of Materials Science, 2013,48(21),7384.
101 Ikoma Y, Hayano K, Edalati K, et al. Applied Physics Letters, 2012,101(12),121908.
102 Akrami S, Watanabe M, Ling T H, et al. Applied Catalysis B, Environmental, 2021,298,120566.
103 Wang Q, Watanabe M, Edalati K. The Journal of Physical Chemistry C, 2020,124(25),13930.
104 Lachinov A N, Alexandrov I V, Shishlov N M, et al. Solid State Phenomena, 2003,94,339.
105 Larsen H A, Drickamer H G. The Journal of Physical Chemistry, 1957,61(9),1249.
106 Beloshenko V A, Varyukhin V N, Voznyak A V, et al. Doklady Physical Chemistry, 2009,426(1),81.
107 Vozniak I, Beloshenko V, Savchenko B, et al. Journal of Applied Polymer Science, 2021,138(4),49720.
108 Beloshenko V, Voznyak Y, Voznyak A, et al. Composites Part B: Engineering, 2017,112,22.
109 Sauvage X, Malandain J J, Hohenwarter A. In: 4th International Confe-rence on Nanomaterials by Severe Plastic Deformation. Goslar, Germany, 2008, pp.584.
[1] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[2] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[5] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[6] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[7] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[8] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[9] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[10] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[11] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[12] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[13] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[14] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[15] 陈强, 张而耕, 梁丹丹, 周琼, 黄彪, 韩生. nc-Ti(C,N)/a-C复合涂层的微观结构和性能[J]. 材料导报, 2023, 37(22): 22080131-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed