Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080175-17    https://doi.org/10.11896/cldb.21080175
  无机非金属及其复合材料 |
碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述
饶强海1, 胡光煊1, 张春媚1, 杨鸿斌1, 胡芳馨1,2,*, 郭春显1,2,*
1 苏州科技大学材料科学与工程学院,江苏 苏州 215009
2 江苏省生化传感与芯片技术工程实验室,江苏 苏州 215009
Electrochemical Sensor Construction of Carbon-based Materials for Ultrasensitive and Precise Determination of Dihydroxybenzene Isomers: a Review
RAO Qianghai1, HU Guangxuan1, ZHANG Chunmei1, YANG Hongbin1, HU Fangxin1,2,*, GUO Chunxian1,2,*
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Jiangsu Laboratory of Biological and Chemical Sensing and Biochip, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 47555KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 苯二酚是一种常见的有机污染物,它有对苯二酚、邻苯二酚和间苯二酚三种同分异构体,三者在结构和理化性质上十分相似且常在水中共存。苯二酚在工业生产中广泛用作化工原料或中间体,但是其有高毒性、致癌性和难降解性,所产生的含酚废水对环境的危害极大,同时对人体健康构成严重威胁。因此,实现苯二酚异构体的准确鉴别和测定尤为重要。
电化学传感器具有灵敏度高、检测限低、线性范围宽和操作简便以及成本低等优点,已被广泛用于重金属和酚类等环境污染物的检测。碳基材料具有高导电性、巨大的比表面积和良好的化学稳定性,能有效促进异构体的传质、表面吸附和电子转移过程,为实现异构体的同时传感提供了良好的基础。此外,表面功能化、掺杂及复合其他纳米材料等手段可进一步调控碳基材料的组成及结构,并改善其对异构体的传感性能。
本文首先简要介绍了苯二酚的环境污染和危害及检测方法,然后阐述了碳基材料构建的电化学传感器在同时测定苯二酚异构体方面的研究进展,其中涵盖了苯二酚传感器的电化学传感性能、性能增强机制以及碳基材料的构性关系,还讨论了三种异构体的电化学氧化路径和反应机理。最后,本文就电化学传感器实现异构体超灵敏精准检测所面临的问题提出了建议,以期进一步促进苯二酚电化学传感器的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
饶强海
胡光煊
张春媚
杨鸿斌
胡芳馨
郭春显
关键词:  电化学传感器  苯二酚异构体  同时检测  碳基纳米材料  电氧化机制    
Abstract: Dihydroxybenzene isomers are common organic contaminants, including hydroquinone, catechol and resorcinol, which behave similar structures and physicochemical properties and often coexist in water. The isomers are widely utilized in industry as raw materials or interme-diates; however, they are highly toxic, carcinogenic and refractory. The resulting phenol-containing wastewater poses a major threat to environment and people health. Therefore, it is of critical significance to efficiently and accurately determine dihydroxybenzene isomers.
Electrochemical sensors exhibit high sensitivity, ultralow limits of detection (LOD), wide linear range, ease of operation and low cost, and they have been widely utilized in the sensing of contaminants such as heavy metals ions and phenols. Due to high conductivity, large specific-surface area, and good chemical stability, carbon-based nanomaterials can effectively promote the adsorption, mass transfer and electron transfer process, providing a good basis to implement the simultaneous detection of isomers. Furthermore, surface functionalization, doping and compounding of other nanomaterials can regulate the composition and structure of carbon-based materials, which can further facilitate their sensing performance.
This review briefly introduces the environmental hazards of dihydroxybenzene isomers and its corresponding detection methods. Then, we elaborate the research progress of simultaneous determination of dihydroxybenzene isomers by electrochemical sensors constructed of carbon-based materials, including electrochemical sensing performance, enhancement mechanism of performance, and the structure-activity relationship of electrochemical sensor constructed by carbon-based materials. And, the electrochemical oxidation pathways and reaction mechanisms of the three isomers are also discussed in detail. Finally, this review discusses the challenge of ultrasensitive and precise determination of isomers, for promoting the development of dihydroxybenzene sensors.
Key words:  electrochemical sensor    dihydroxybenzene isomer    simultaneous determination    carbon-based nanomaterial    electrooxidation mechanism
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  X502  
基金资助: 国家自然科学基金(21605110;21972102);江苏省研究生实践创新计划项目(SJCX20_1101);江苏省双创人才计划
通讯作者:  *胡芳馨,苏州科技大学副教授、硕士研究生导师。2015年获西南大学理学博士学位,2013—2014年美国凯斯西储大学联合培养博士生。研究方向为光/电化学生物传感器及细胞释放活性小分子原位检测。在相关领域杂志包括Adv. Fun Mater.、Nano-Micro Lett.、Chem. Eng. J.、Biosens. Bioelectron.等发表SCI收录论文30余篇,论文总引用1 550多次,H因子16。申请专利11项,主持科研项目4项。hufx278@usts.edu.cn
郭春显,苏州科技大学材料科学与工程学院教授、国家高层次人才青年专家、江苏省工程实验室主任。在新加坡南洋理工大学获得博士学位,并在澳大利亚阿德莱德大学和美国凯斯西储大学开展研究工作。研究方向为表界面调控的微纳结构材料及其电催化和仿生催化。在相关领域杂志包括Chem. Rev.、Angew. Chem. Int. Ed.、Adv. Mater.、ACS Nano等发表论文130余篇,论文被引用13 000余次。cxguo@usts.edu.cn   
作者简介:  饶强海,2021年于苏州科技大学取得工程硕士学位。主要研究领域为酚类污染物的电化学传感研究。
引用本文:    
饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
RAO Qianghai, HU Guangxuan, ZHANG Chunmei, YANG Hongbin, HU Fangxin, GUO Chunxian. Electrochemical Sensor Construction of Carbon-based Materials for Ultrasensitive and Precise Determination of Dihydroxybenzene Isomers: a Review. Materials Reports, 2023, 37(5): 21080175-17.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080175  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080175
1 Du Y X, Zhou M H, Lei L C. Journal of Hazardous Materials, 2006, 136(3), 859.
2 Schweigert N, Acero J L, Von Gunten U, et al. Environmental and Molecular Mutagenesis, 2000, 36(1), 5.
3 Irons R D. Journal of Toxicology and Environmental Health, 1985, 16(5), 673.
4 Jagetia G C, Aruna R. Toxicology Letters, 1997, 93(2-3), 205.
5 Lau S S, Monks T J, Everitt J I, et al. Chemical Research in Toxicology, 2001, 14(1), 25.
6 Yadav G D, Deshmukh S A R K, Asthana N S. Industrial & Engineering Chemistry Research, 2005, 44(21), 7969.
7 Klaus W S, Decker D. Resorcinol, in: ullmann's encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA., Germany, 2000.
8 Lynch B S, Delzell E S, Bechtel D H. Regulatory Toxicology and Pharmacology, 2002, 36(2), 198.
9 WHO. Concise international chemical assessment document 71: resorcinol, Switzerland, 2006.
10 Radalla A M. Journal of Solution Chemistry, 2010, 39(9), 1394.
11 Xie T Y, Liu Q W, Shi Y R, et al. Journal of Chromatography A, 2006, 1109(2), 317.
12 Asan A, Isildak I. Journal of Chromatography A, 2003, 988(1), 145.
13 Moldoveanu S C, Kiser M. Journal of Chromatography A, 2007, 1141(1), 90.
14 Guan N, Zeng Z R, Wang Y C, et al. Analytica Chimica Acta, 2000, 418(2), 145.
15 Shi B F, Su Y B, Zhao J J, et al. Nanoscale, 2015, 7(41), 17350.
16 Zhang L P, Xing Y P, Liu L H, et al. Sensors and Actuators B: Chemical, 2016, 225, 593.
17 Lin Z Y, Kuo Y C, Chang C J, et al. RSC Advances, 2018, 8(35), 19381.
18 Yuan X Y, Wang B, Yan C L, et al. Microchemical Journal, 2020, 158.
19 Yuan D H, Chen S H, Yuan R, et al. Analyst, 2013, 138(20), 6001.
20 Lu Q Y, Hu H X, Wu Y Y, et al. Biosensors & Bioelectronics, 2014, 60, 325.
21 Wu C, Cheng Q, Wu K B. Analytical Chemistry, 2015, 87(6), 3294.
22 Huang L L, Cao Y Y, Diao D F. Sensors and Actuators B: Chemical, 2020, 305, 127495.
23 Zhou X B, He Z F, Lian Q W, et al. Sensors and Actuators B: Chemical, 2014, 193, 198.
24 Velmurugan M, Karikalan N, Chen S M, et al. Journal of Colloid and Interface Science, 2017, 500, 54.
25 Zhang H S, Bo X J, Guo L P. Sensors and Actuators B: Chemical, 2015, 220, 919.
26 Lai T, Cai W H, Dai W L, et al. Electrochimica Acta, 2014, 138, 48.
27 Huang Y H, Chen J H, Sun X, et al. Sensors and Actuators B:Chemical, 2015, 212, 165.
28 Zhu S Y, Gao W Y, Zhang L, et al. Sensors and Actuators B: Chemical, 2014, 198, 388.
29 Zhang D D, Peng Y G, Qi H L, et al. Sensors and Actuators B: Chemical, 2009, 136(1), 113.
30 Quan Y L, Xue Z H, Shi H C, et al. Analyst, 2012, 137(4), 944.
31 Wang X, Wu M, Li H, et al. Sensors and Actuators B: Chemical, 2014, 192, 452.
32 Wang Y, Xiong Y Y, Qu J Y, et al. Sensors and Actuators B: Chemical, 2016, 223, 501.
33 Zhang H Q, Huang Y H, Hu S R, et al. Electrochimica Acta, 2015, 176, 28.
34 Yang S Y, Yang M, Liu Q Y, et al. Journal of the Electrochemical Society, 2019, 166(6), B547.
35 Bai J, Guo L P, Ndamanisha J C, et al. Journal of Applied Electrochemistry, 2009, 39(12), 2497.
36 Hong Z Q, Zhou L H, Li J X, et al. Electrochimica Acta, 2013, 109, 671.
37 Tang L, Zhou Y Y, Zeng G M, et al. Analyst, 2013, 138(12), 3552.
38 Yuan X, Yuan D, Zeng F, et al. Applied Catalysis B: Environmental, 2013, 129, 367.
39 Xiang Y, Li L, Liu H, et al. Sensors and Actuators B: Chemical, 2018, 267, 302.
40 Xu J Y, Xia J F, Zhang F F, et al. Electrochimica Acta, 2017, 251, 71.
41 Chen H, Wu X X, Lao C F, et al. Journal of Electroanalytical Chemistry, 2019, 835, 254.
42 Zheng S N, Wu D, Huang L M, et al. Journal of Applied Electrochemistry, 2019, 49(6), 563.
43 Yin H S, Zhang Q M, Zhou Y L, et al. Electrochimica Acta, 2011, 56(6), 2748.
44 Palanisamy S, Thangavelu K, Chen S M, et al. Journal of Electroanalytical Chemistry, 2017, 785, 40.
45 Jiang H, Zhang D X, He Z F, et al. Analytical Letters, 2015, 48(9), 1426.
46 Ma X X, Chen L, Ren X H, et al. Journal of Materials Chemistry A, 2018, 6(4), 1574.
47 Wang R R, Chen Z L, Sun Y Q, et al. Chemical Engineering Journal, 2020, 399, 125686.
48 Huang R M, Chen S S, Yu J G, et al. Ecotoxicology and Environmental Safety, 2019, 184, 109619.
49 Huang J S, Zhang X P, Zhou L M, et al. Sensors and Actuators B: Chemical, 2016, 224, 568.
50 Ma Y, Cao Z P, Wang Y, et al. International Journal of Electrochemical Science, 2019, 14(4), 3916.
51 Mohapatra D, Gowthaman N S K, Sayed M S, et al. Sensors and Actuators B: Chemical, 2020, 304, 127325.
52 Gao J J, Fang J K, Ju X H, et al. ACS Applied Materials & Interfaces, 2017, 9(44), 38802.
53 Huang R M, Liao D, Chen S S, et al. Sensors and Actuators B:Chemical, 2020, 320, 128386.
54 Qi Y L, Cao Y, Meng X T, et al. Sensors and Actuators B: Chemical, 2019, 279, 170.
55 Yang H, Li S X, Yu H W, et al. Nanoscale, 2019, 11(18), 8950.
56 Guo H L, Peng S, Xu J H, et al. Sensors and Actuators B: Chemical, 2014, 193, 623.
57 Liu Y Y, Xie R R, Zou X, et al. Journal of the Electrochemical Society, 2021, 168(1), 017514.
58 Warg H, Zhang T, Hu X Y, et al. Microchimica Acta, 2018, 185(1), 37.
59 Zhang Y Z, Sun R X, Luo B M, et al. Electrochimica Acta, 2015, 156, 228.
60 Xiao L L, Yin J, Li Y C, et al. Analyst, 2016, 141(19), 5555.
61 Gao K, Wang B, Tao L, et al. Advanced Materials, 2019, 31(13), 1805121 .
62 Jayabal E, Natarajan A, Rengarajan V. Journal of Applied Electrochemistry, 2021, 51, 1189.
63 Nasr B, Abdellatif G, Canizares P, et al. Environmental Science & Technology, 2005, 39(18), 7234.
64 Heeger A J. Journal of Physical Chemistry B, 2001, 105(36), 8475.
65 Wang X X, Yu G F, Zhang J, et al. Progress in Materials Science, 2021, 115, 100704.
66 Heeger A J. Synthetic Metals, 2001, 125(1), 23.
67 Huang D L, Wang J, Cheng F, et al. Microchimica Acta, 2019, 186(6), 381.
68 Feng X, Gao W W, Zhou S H, et al. Analytica Chimica Acta, 2013, 805, 36.
69 Jiang D F, Pang J, You Q N, et al. Biosensors & Bioelectronics, 2019, 124, 260.
70 Ahammad A J S, Rahman M M, Xu G R, et al. Electrochimica Acta, 2011, 56(14), 5266.
71 Yang P H, Wei W Z, Yang L. Microchimica Acta, 2007, 157(3-4), 229.
72 Song K L, Li R, Li K, et al. New Journal of Chemistry, 2020, 44(46), 20294.
73 Kocak S. Electroanalysis, 2021, 33(2), 375.
74 Tehrani R M A, Ghadimi H, Ab Ghani S. Sensors and Actuators B: Chemical, 2013, 177, 612.
75 Si W M, Lei W, Zhang Y H, et al. Electrochimica Acta, 2012, 85, 295.
76 Si W M, Lei W, Han Z, et al. Sensors and Actuators B: Chemical, 2014, 199, 154.
77 Mao H, Liu M H, Cao Z Q, et al. Applied Surface Science, 2017, 420, 594.
78 Zheng L Z, Xiong L Y, Li Y D, et al. Sensors and Actuators B: Chemical, 2013, 177, 344.
79 Cheng D Y, Kan X W. Journal of Electroanalytical Chemistry, 2020, 857, 113741.
80 Kocak C C, Kocak S. Electroanalysis, 2020, 32(2), 358.
81 Prathap M U A, Satpati B, Srivastava R. Sensors and Actuators B: Che-mical, 2013, 186, 67.
82 He K Y, Wang X S, Meng X H, et al. Sensors and Actuators B: Chemical, 2014, 193, 212.
83 Lopa N S, Rahman M M, Jang H, et al. Microchimica Acta, 2018, 185(1), 23.
84 Li C, Liu W L, Gu Y, et al. Journal of Applied Electrochemistry, 2014, 44(9), 1059.
85 Edris N M M A, Abdullah J, Kamaruzaman S, et al. Microchimica Acta, 2019, 186(4), 261.
86 Chetankumar K, Swamy B E K, Sharma S C. Microchemical Journal, 2020, 156, 104979.
87 Han L, Hang X L. Electroanalysis, 2009, 21(2), 124.
88 Ma X M, Liu Z N, Qiu C C, et al. Microchimica Acta, 2013, 180(5-6), 461.
89 Chen Y, Liu X Y, Zhang S, et al. Electrochimica Acta, 2017, 231, 677.
90 Bhat S A, Rashid N, Rather M A, et al. ACS Applied Materials & Interfaces, 2018, 10(19), 16376.
91 Zhou H F, Huang T T, Chen D J, et al. Sensors and Actuators B: Che-mical, 2017, 249, 405.
92 Palanisamy S, Karuppiah C, Chen S M, et al. Analytical Methods, 2014, 6(12), 4271.
93 Sabbaghi N, Noroozifar M. Analytica Chimica Acta, 2019, 1056, 16.
94 Rajkumar C, Thirumalraj B, Chen S M, et al. Microchimica Acta, 2018, 185(8), 395.
95 Fan L M, Li X Y, Kan X W. Electrochimica Acta, 2016, 213, 504.
96 Wang J S, Yang J, Xu P P, et al. Sensors and Actuators B: Chemical, 2020, 306, 127590.
97 Chen J, Gao Y J, Hu X Y, et al. Talanta, 2019, 194, 493.
98 Palanisamy S, Karuppiah C, Chen S M, et al. Electroanalysis, 2015, 27(5), 1144.
99 Zhu Y, Huai S S, Jiao J L, et al. Journal of Electroanalytical Chemistry, 2020, 878, 114726.
100 Goulart L A, Goncalves R, Correa A A, et al. Microchimica Acta, 2018, 185(1), 12.
101 Dhananjayan N, Palanisamy M, Jeyaraj W, et al. Electrochimica Acta, 2017, 246, 484.
102 Arsalan M, Qiao X J, Awais A, et al. Electroanalysis, 2021, 33(6), 1528.
103 Van Deelen T W, Mejia C H, De Jong K P. Nature Catalysis, 2019, 2(11), 955.
104 Li Z J, Sun X L, Xia Q F, et al. Electrochimica Acta, 2012, 85, 42.
105 Chen D, Sun P C, Liu H, et al. Journal of Materials Chemistry A, 2017, 5(9), 4421.
106 Tang C Y, Asefa T. Journal of Materials Chemistry A, 2020, 8(25), 12285.
107 Awais A, Arsalan M, Sheng Q L, et al. Electroanalysis, 2021, 33(1), 170.
108 Meng S, Hong Y, Dai Z, et al. ACS Applied Materials & Interfaces, 2017, 9(14), 12453.
109 Zheng G H, Zhang Y Y, Nie T M, et al. Sensors and Actuators B:Che-mical, 2019, 291, 362.
110 Song Y W, Zhao M G, Wang X T, et al. Materials Chemistry and Physics, 2019, 234, 217.
111 Lu X Y, Zhang S F, Kong F Y, et al. Microchemical Journal, 2021, 166, 106246.
112 Erogul S, Bas S Z, Ozmen M, et al. Electrochimica Acta, 2015, 186, 302.
113 Kong F Y, Li R F, Yao L, et al. Microchimica Acta, 2019, 186(3), 177.
114 Abraham T, Rejil K R, George J M, et al. Journal of Porous Materials, 2020, 27(1), 303.
115 Shaikshavali P, Reddy T M, Gopal T V, et al. Journal of Materials Science: Materials in Electronics, 2021, 32(4), 5243.
116 Unnikrishnan B, Ru P L, Chen S M. Sensors and Actuators B: Chemical, 2012, 169, 235.
117 Gan T, Sun J Y, Huang K J, et al. Sensors and Actuators B:Chemical, 2013, 177, 412.
118 Chen S S, Huang R M, Yu J G, et al. Microchimica Acta, 2019, 186(9),643.
119 Ge C, Li H J, Li M J, et al. Carbon, 2015, 95, 1.
120 Yan Y R, Huang Q T, Wei C, et al. RSC Advances, 2016, 6(116), 115317.
121 Alshahrani L A, Liu L Y, Sathishkumar P, et al. Journal of Electroanalytical Chemistry, 2018, 815, 68.
122 Zhao L, Yu J, Yue S Z, et al. Journal of Electroanalytical Chemistry, 2018, 808, 245.
123 Zhou T T, Gao W L, Gao Y S, et al. Journal of the Electrochemical Society, 2019, 166(12), B1069.
124 Tsai M S, Lu C J, Su P G. Materials Chemistry and Physics, 2018, 215, 293.
125 Vilian A T E, Chen S M, Huang L H, et al. Electrochimica Acta, 2014, 125, 503.
126 Wang Z Y, Li M S, Ye Y X, et al. Journal of Solid State Electrochemistry, 2019, 23(1), 81.
127 Fotouhi L, Dorraji P S, Keshmiri Y S S, et al. Journal of the Electrochemical Society, 2018, 165(5), B202.
128 Zhang Y L, Xie J L, Xiao S X, et al. Sensors and Actuators B: Chemical, 2014, 204, 102.
129 Ponnusamy R, Venkatesan R, Samal R, et al. Applied Surface Science, 2021, 536, 147669.
130 Dong S Y, Li Z J, Fu Y L, et al. Journal of Electroanalytical Chemistry, 2020, 858, 113785.
131 Jiang Y M, Jia L P, Yu S J, et al. Journal of Materials Chemistry A, 2014, 2(18), 6656.
132 Wei C, Zhao Y Y, Huo J C, et al. International Journal of Electroche-mical Science, 2017, 12(2), 1421.
133 Buleandra M, Rabinca A A, Badea I A, et al. Microchimica Acta, 2017, 184(5), 1481.
134 Sudhakara S M, Devendrachari M C, Kotresh H M N, et al. Journal of Electroanalytical Chemistry, 2021, 884, 115071.
135 Yang S Y, Yang M, Yao X, et al. Sensors and Actuators B: Chemical, 2020, 320, 128294.
136 Deng M, Lin S R, Bo X J, et al. Talanta, 2017, 174, 527.
137 Wang H L, Hu Q Q, Meng Y, et al. Journal of Hazardous Materials, 2018, 353, 151.
138 Huang H, Chen Y, Chen Z, et al. Journal of Hazardous Materials, 2021, 416, 125895.
139 Zhou J, Li X, Yang L L, et al. Analytica Chimica Acta, 2015, 899, 57.
140 Yang Y Z, Wang Q X, Qiu W W, et al. Journal of Physical Chemistry C, 2016, 120(18), 9794.
141 Chen Q, Li X, Min X M, et al. Journal of Electroanalytical Chemistry, 2017, 789, 114.
142 Ai Y J, Gao N N, Wang Q X, et al. Journal of Electroanalytical Che-mistry, 2020, 872, 114161.
143 Zheng S B, Hu J Q, Cui X, et al. Electroanalysis, 2020, 32(9), 2010.
144 Ye Z, Wang Q W, Qiao J T, et al. Analyst, 2019, 144(6), 2120.
145 O'Keeffe M, Peskov M A, Ramsden S J, et al. Accounts of Chemical Research, 2008, 41(12), 1782.
146 Singh S, Numan A, Zhan Y Q, et al. Journal of Hazardous Materials, 2020, 399, 123042.
147 Gill A A S, Singh S, Agrawal N, et al. Microchimica Acta, 2020, 187(1), 79.
148 Song Y W, Zhao M G, Li H, et al. Sensors and Actuators B: Chemical, 2018, 255, 1927.
149 Tang J, Liu R H, Li J, et al. Journal of the Electrochemical Society, 2020, 167(6), 067504.
150 Zhu C R, Gao D Q, Ding J, et al. Chemical Society Reviews, 2018, 47(12), 4332.
151 Yin D D, Liu J, Bo X J, et al. Analytica Chimica Acta, 2020, 1093, 35.
152 Ma G R, Xu H, Wu M J, et al. Microchimica Acta, 2019, 186(11), 689.
153 Ni P J, Dai H C, Li Z, et al. Talanta, 2015, 144, 258.
154 Huang K J, Wang L, Liu Y J, et al. Electrochimica Acta, 2013, 107, 379.
155 Cao X, Cai X L, Feng Q C, et al. Analytica Chimica Acta, 2012, 752, 101.
156 Perez-Rafols C, Guo K Y, Alba M, et al. Electrochimica Acta, 2021, 377, 138077.
157 Li M G, Ni F, Wang Y L, et al. Electroanalysis, 2009, 21(13), 1521.
158 Arul P, Narayanamoorthi E, John S A. Sensors and Actuators B: Chemical, 2020, 313, 128033.
159 Tohidinia M, Farsadrooh M, Bahmanzadeh S, et al. RSC Advances, 2018, 8(3), 1237.
160 Lin Q Q, Li Q, Batchelor-Mcauley C, et al. Journal of Physical Che-mistry C, 2015, 119(3), 1489.
161 Da Silva A R L, Dos Santosa A J, Martinez-Huitle C A. RSC Advances, 2018, 8(7), 3483.
162 Ngamchuea K, Tharat B, Hirunsit P, et al. RSC Advances, 2020, 10(47), 28454.
[1] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[2] 王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
[3] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[4] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[5] 吕路强, 沈骏, 向路, 刘双翼, 谢雄, 周猛兵. 碳基纳米结构作为燃料电池催化剂载体的研究进展*[J]. 材料导报, 2017, 31(21): 9-18.
[6] 李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林. DNA电化学传感器对金属离子检测的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 115-120.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed