Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22080131-7    https://doi.org/10.11896/cldb.22080131
  无机非金属及其复合材料 |
nc-Ti(C,N)/a-C复合涂层的微观结构和性能
陈强1, 张而耕1,*, 梁丹丹1,*, 周琼1, 黄彪1, 韩生2
1 上海应用技术大学上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418
2 上海应用技术大学化学与环境工程学院,上海 201418
Microstructure and Properties of nc-Ti(C, N)/a-C Composite Coating
CHEN Qiang1, ZHANG Ergen1,*, LIANG Dandan1,*, ZHOU Qiong1, HUANG Biao1, HAN Sheng2
1 Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment, Shanghai Institute of Technology, Shanghai 201418, China
2 School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
下载:  全 文 ( PDF ) ( 9847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为将TiN、TiC涂层的高硬、耐磨性能与C涂层的自润滑、抗腐蚀性能相结合,基于阴极电弧+辉光放电技术合成了三元nc-Ti(C,N)及nc-Ti(C,N)/a-C复合涂层,并利用SEM、XRD、Raman、XPS,以及纳米压痕仪、摩擦磨损试验机、电化学工作站作为表征手段研究了C含量及其组织形态对TiCN涂层微观组织结构、力学性能、摩擦性能及电化学腐蚀行为的影响。结果表明:随C含量的增加,涂层由TiN、TiC及TiCxN1-x的多晶相结构转变为多晶/非晶结构,当C含量为43.85%(原子分数,下同)时,涂层中形成TiN、TiC、TiCx N1-x及sp2-C、sp3-C的复合结构;涂层的纳米硬度(H)、弹性模量(E)、H/E及H3/E2随C含量的增加呈先增大后减小的趋势,C含量为43.85%时,涂层硬度最大、韧性最佳;C含量为65.16%时,TiCN涂层中的高sp2-C、sp3-C含量使其表现出低的摩擦系数(小于0.1);nc-Ti(C,N)/a-C复合结构显著改善了涂层的电化学腐蚀性能,C含量为43.85%时,涂层的腐蚀电位最高为-0.108 VSCE,腐蚀电流密度最低为3.55×10-8 A/cm2。硬质相与类石墨及无定型结构的结合能够进一步强化涂层的力学及摩擦性能,nc-Ti(C,N)/a-C复合涂层较好的耐腐蚀性能主要归因于涂层较为致密的纳米晶/非晶组织结构及惰性非晶成分。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈强
张而耕
梁丹丹
周琼
黄彪
韩生
关键词:  复合薄膜  微观结构  力学性能  自润滑  腐蚀    
Abstract: To combine the high hardness and wear resistance of TiN and TiC coating with the self-lubricating and corrosion resistance of carbon coating. In this study, ternary nc-Ti(C, N) and nc-Ti(C, N)/a-C composite coating was synthesized through the cathodic arc and glow discharge technology. The effects of C content and characteristics on the microstructure, mechanical performance, tribological properties, and electroche-mical behavior of TiCN coatings were studied by SEM, XRD, Raman, XPS, nano-indenter, tribometer, and electrochemical workstation. The results show that with the increase of C content, the polycrystalline phase structure of TiN, TiC, and TiCxN1-x changes to polycrystalline/amorphous structure. With the C content of 43.85at%, amorphous components were precipitated to form the composite structure of TiN, TiC, TiCxN1-x, sp2-C, and sp3-C. As C content increased, the nano hardness (H), elastic modulus (E),H/E, and H3/E2 of the coating were initially increased and then decreased, the coating has the highest hardness and the best toughness with a C content of 43.85at%. With the C content of 65.16at%, the TiCN coating showed a low friction coefficient of about less than 0.1 because of the high content of sp2-C and sp3-C. nc-Ti(C, N)/a-C composite structure significantly improved the electrochemical corrosion properties of the TiCN coating. When the C content is 43.85at%, the highest corrosion potential and the lowest corrosion current density of the TiCN coating are -0.108 VSCE and 8.55×10-10 A/cm2 respectively. The combination of hard phases with graphite-like and amorphous structures can further strengthen the mechanical and frictional properties of the coatings. The better corrosion resistance of nc-Ti(C, N)/a-C composite coatings is mainly attributed to the dense nanocrystalline/amorphous structure and inert amorphous composition of the coatings.
Key words:  composite film    microstructure    mechanical property    self-lubrication    corrosion
出版日期:  2023-11-25      发布日期:  2023-11-21
基金资助: 上海高校实验技术队伍建设计划(10110N230079-A07);上海市优秀技术带头人项目(22XD1434500);引进人才科研经费(YJ2022-31);国家自然科学基金(51901138); 上海市自然科学基金(20ZR1455700)
通讯作者:  * 张而耕,上海应用技术大学机械工程学院与上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心教授、硕士研究生导师。1995年阜新矿业学院热加工工艺及设备专业本科毕业,2000年沈阳建筑工程学院机械制造及其自动化专业硕士毕业,2003年华东理工大学化工过程机械专业博士毕业,2010年华东理工大学材料科学与工程学院博士后出站,2010年进入上海应用技术大学工作至今。目前主要从事物理气相沉积涂层、机械制造、材料失效分析等方面的研究工作。发表论文40余篇,授权专利20余项。
梁丹丹,上海应用技术大学机械工程学院与上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心讲师。2010年烟台大学材料科学与工程专业本科毕业,2013年中南大学材料加工工程专业硕士毕业,2018年同济大学材料科学与工程专业博士毕业,2021年深圳大学机电与控制工程学院博士后出站,2021年进入上海应用技术大学工作至今。目前主要从事非晶合金材料、涂层材料等方面的研究工作,已发表论文10余篇。zhangeg@yeah.net;liang.d.d@163.com   
作者简介:  陈强,2013年6月、2017年6月分别获得南京理工大学工学学士学位和上海应用技术大学工学硕士学位。现为上海应用技术大学上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心实验师,在张而耕教授的指导下进行研究工作。目前主要研究领域为超硬纳微米PVD涂层、材料失效分析。
引用本文:    
陈强, 张而耕, 梁丹丹, 周琼, 黄彪, 韩生. nc-Ti(C,N)/a-C复合涂层的微观结构和性能[J]. 材料导报, 2023, 37(22): 22080131-7.
CHEN Qiang, ZHANG Ergen, LIANG Dandan, ZHOU Qiong, HUANG Biao, HAN Sheng. Microstructure and Properties of nc-Ti(C, N)/a-C Composite Coating. Materials Reports, 2023, 37(22): 22080131-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080131  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22080131
1 Guemmaz M, Mosser A, Ahuja R, et al. International Journal of Inorganic Materials, 2001, 3, 1319.
2 Yu S Y, Zeng Q F, Oganov A, et al. Physical Chemistry Chemical Physics, 2015, 17, 11763.
3 Zhang D D, Shi K Y, Tang H C. Surface Technology, 2020, 49(6), 297 (in Chinese).
张冬冬, 史昆玉, 汤皓晨. 表面技术, 2020, 49(6), 297.
4 Wang J, Liu Y, Ye J W. Rare Metal Materials and Engineering, 2018, 47(5), 1385.
5 Aguilera L D, Miranda C S, Moreno K J. Journal of Iron and Steel Research (International), 2017, 24(8), 8.
6 Kong Y, Ma Y H, Li Y J, et al. Rare Metal Materials and Engineering, 2017, 46(4), 1026 (in Chinese).
孔营, 马英鹤, 李永健, 等. 稀有金属材料与工程, 2017, 46(4), 1026.
7 Li F Z, Wang K L, Zhao J F, et al. China Surface Engineering, 2017, 30(2), 56 (in Chinese).
李方正, 王昆仑, 赵继凤, 等. 中国表面工程, 2017, 30(2), 56.
8 Petkov N, Kashkarov E, Obrosov A, et al. Journal of Materials Engineering and Performance, 2018, 28(1), 343.
9 Siow P C, Ghani J A, Rizal M, et al. Surface and Interface Analysis, 2019, 51(6), 611.
10 Sun H, Billard A, Luo H, et al. Vacuum, 2021, 187, 110139.
11 Guo F F, Bi Y H, Li C, et al. Ceramics International, 2020, 46(15), 23510.
12 Qin Y F, Zheng G F, Zhu L Y, et al. Surface and Coatings Technology, 2018, 342, 137.
13 Zeng Y Q, Qiu Y D, Mao X Y, et al. Thin Solid Films, 2015, 584, 283.
14 Kuptsov K A, Kiryukhantsev-korneev P V, Sheveyko A N, et al. Acta Materialia, 2015, 83, 408.
15 Chen R, Tu J P, Liu D G, et al. Surface and Coatings Technology, 2011, 205(21-22), 5228.
16 Petkov N, Bakalova T, Bahchedzhiev H, et al. Journal of Nano Research, 2018, 51, 78.
17 Shan L, Wang Y X, Li J L, et al. Surface and Coatings Technology, 2013, 226, 40.
18 Cheng Y H, Browne T, Heckerman B. Vacuum, 2010, 85(1), 89.
19 Gui B H, Zhou H, Zheng J, et al. Ceramics International, 2021, 47, 8175.
20 Hu C, Chen L, Lou Y M, et al. Journal of Alloys and Compounds, 2021, 855, 157441.
21 Ma X, He X B, Liang Y Y, et al. Rare Metal Materials and Engineering, 2020, 49(2), 589 (in Chinese), .
马新, 何新波, 梁艳媛, 等. 稀有金属材料与工程, 2020, 49(2), 589.
22 Lee J H, Oh I H, Jang J H, et al. Metals and Materials International, 2020, 27(3), 456.
23 Ma Q S, Li L L, Xu Y, et al. Applied Surface Science, 2017, 392, 826.
24 Ma G J, Lin G Q, Sun G, et al. Physics Procedia, 2011, 18, 9.
25 Ghadai R K, Das S, Kalita K, et al. Materials Chemistry and Physics, 2021, 260, 124082.
26 Zhong A D, Moorea J J, Mishraa B M, et al. Surface and Coatings Technology, 2003, 163-164, 50.
27 Jeyachandran Y L, Narayandass S K, Mangalaraj D, et al. Materials Science and Engineering: A, 2007, 445-446, 223.
28 Zhang X H, Li J, Xiao J C, et al. Surface and Coatings Technology, 2019, 362, 21.
29 Musil J. Surface and Coatings Technology, 2000, 125, 322.
30 Leyland A, Matthews A. Wear, 2000, 246, 1.
31 Lawn B R, Evans A G, Marshall D B. Journal of the American Ceramic Society, 1980, 63(9-10), 574.
32 Drnovšek A, Vo H T, Figueiredo M R, et al. Surface and Coatings Technology, 2021, 409, 126909.
33 Wang D, Lin S S, Shi Q, et al. Ceramics International, 2021, 47(3), 3657.
34 Chen Q, Zhang E G, Zhou Q, et al. China Surface Engineering, 2022, 35(2), 161 (in Chinese).
陈强, 张而耕, 周琼, 等. 中国表面工程, 2022, 35(2), 161.
35 Burstein G T, Liu C, Souto R M, et al. Corrosion Engineering, Science and Technology, 2013, 39(1), 25.
36 Zhang S D, Liu Z W, Wang Z M, et al. Corrosion Science, 2014, 83, 111.
37 Chen S N, Liao B, Chen L, et al. Acta Physica Sinica, 2020, 69(10), 1 (in Chinese).
陈淑年, 廖斌, 陈琳, 等. 物理学报, 2020, 69(10), 1.
38 Liang D D, Zhou Y H, Liu X D, et al. Surface and Coatings Technology, 2022, 433, 128129.
39 Bala N, Singh H, Karthikeyan J, et al. Surface Engineering, 2013, 30(6), 414.
40 Sheu H H, Lin M H, Jian S Y, et al. Surface and Coatings Technology, 2018, 350, 1036.
41 Tao Y S, Xiong TY, Sun C, et al. Applied Surface Science, 2009, 256(1), 261.
42 Zhang Z R, Qian Y H, Xu J J, et al. Ceramics International, 2020, 46(8), 11846.
[1] 杨瑞强, 汪永清, 常启兵, 周健儿. 烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究[J]. 材料导报, 2023, 37(S1): 23040042-9.
[2] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[3] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[4] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[5] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[6] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[7] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[8] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[9] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[10] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[11] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[12] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[13] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[14] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[15] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed