Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21060113-9    https://doi.org/10.11896/cldb.21060113
  高分子与聚合物基复合材料 |
无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用
刘晓英1,2,*, 阮文琳1, 张育新3, 饶劲松3, 尹长青3, 张贤明1,2, 柳云骐2,4
1 重庆工商大学环境与资源学院,重庆 400067
2 重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆 400067
3 重庆大学材料科学与工程学院,重庆 400044
4 中国石油大学(华东)重质油国家重点实验室,山东 青岛 266580
Inorganic-Organic Hybrid Microcapsules:Preparation Technology and Applications in Anti-wear and Corrosion-resistant Coatings
LIU Xiaoying1,2,*, RUAN Wenlin1, ZHANG Yuxin3, RAO Jinsong3, YIN Changqing3, ZHANG Xianming1,2, LIU Yunqi2,4
1 College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
2 Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
3 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
4 State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, Shandong, China
下载:  全 文 ( PDF ) ( 4642KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微胶囊是增强涂层抗磨耐腐蚀性能的有效途径,对涂层抗磨耐腐蚀的研究有着重要意义。常见的微胶囊通常以聚砜(PSF)、聚脲甲醛(PUF)、聚三聚氰胺甲醛(PMF)、聚脲(PU)等有机物质为外壳,当与无机物质复合制成杂化壳时,能够显著增强微胶囊的耐温性、相容性,并有效调节其渗透性和机械强度。
   纳米粘土、纳米SiO2、纳米CaCO3、纳米Al2O3和碳纳米管等是合成杂化壳的良好材料。无机-有机杂化微胶囊具有强的耐温性、力学强度和物理稳定性。利用微胶囊包覆油性物质或离子液体,制备具有自润滑、自修复性能的涂料,在抗磨耐腐蚀方面有广泛应用。
   目前,无机-有机杂化微胶囊的制备方法主要有溶剂蒸发法、Pickering乳液法、原位聚合法和界面聚合法等。溶剂蒸发法试验周期短、简单易行。Pickering乳液法能有效提高包封效率。原位聚合法成球容易、包覆量大且无副产物。界面聚合法具有速度快、反应温和等优势。
   本文讨论了无机-有机杂化微胶囊的制备方法,简述了微胶囊的抗磨耐腐蚀机制,并以制备方法为分类依据,概述了微胶囊在增强高分子有机涂层相关性能中的具体运用,最后对无机-有机杂化微胶囊的制备与应用进行了展望,以期为微胶囊在更多领域中的运用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓英
阮文琳
张育新
饶劲松
尹长青
张贤明
柳云骐
关键词:  无机-有机杂化微胶囊  抗磨  耐腐蚀  自润滑  自修复    
Abstract: Microcapsules' combination with the coating substrate is considered to be an effective way to enhance the anti-wear and anti-corrosion pro-perties of coatings, which is of great significance to the research of anti-wear and anti-corrosion of coatings. Common microcapsules are made of organic materials, such as polysulfone (PSF), polyurea formaldehyde (PUF), polymelamine formaldehyde (PMF), polyurea (PU), etc. When they combined with inorganic materials to make hybrid shells, the temperature resistance and compatibility of microcapsules are promoted, can adjust permeability as well as mechanical strength effectively.
Nano clay, nano-SiO2, nano-CaCO3, nano-Al2O3 and carbon nanotubes become good materials for the synthesis of hybrid shell. The inorga-nic-organic hybrid microcapsules have strong temperature resistance, simultaneously mechanical and physical stability are improved. Microcapsules coated with oily substances or ionic liquids are often used to prepare coatings with self-lubricating and self-healing properties, which are widely used in anti-wear and corrosion resistance.
At present, the preparation methods of inorganic-organic hybrid microcapsules are mainly solvent evaporation, Pickering emulsion polymerization, in situ polymerization and interfacial polymerization. The solvent evaporation method is simple and easy to operate. Pickering emulsion method can effectively improve the entrapment efficiency. In situ polymerization is easy balling, large coating amount and no by-products. Interfacial polymerization has the advantages of high speed, mild reaction process.
In this paper, the preparation methods of inorganic-organic hybrid microcapsules are discussed, and the anti-wear and anti-corrosion mechanism of microcapsules is briefly described. Based on the classification of preparation methods, the specific application of microcapsules in enhancing the related properties of polymer organic coatings is summarized. Finally, the preparation and application of inorganic-organic hybrid microcapsules are prospected, in order to provide reference for the application of microcapsules in more fields.
Key words:  inorganic-organic hybrid shell microcapsules    anti-wear    anti-corrosion    self-lubrication    self-healing
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51908092);重庆市青年拔尖人才(CQYC2020057871);重庆市自然科学基金博士后科学基金(cstc2019jcyj-bshX0085);国家自然科学基金广东联合基金(U1801254)
通讯作者:  *刘晓英,分别于2011年、2018年在重庆大学材料学院获得工学硕士和博士学位。现为重庆工商大学环境与资源学院副教授。2020年入选重庆市青年拔尖人才(英才计划)。目前主要研究兴趣包括建筑功能材料的可控制备与应用。发表SCI论文50余篇,其中以第一作者或通信作者发表JCR一、二区18篇,授权专利4项。273839960@qq.com   
引用本文:    
刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
LIU Xiaoying, RUAN Wenlin, ZHANG Yuxin, RAO Jinsong, YIN Changqing, ZHANG Xianming, LIU Yunqi. Inorganic-Organic Hybrid Microcapsules:Preparation Technology and Applications in Anti-wear and Corrosion-resistant Coatings. Materials Reports, 2023, 37(9): 21060113-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060113  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21060113
1 Zhu Z Q, Li E, Liu X H, et al. Composites:Part A, 2020, 130, 105752.
2 Tong X M, Zhang T, Yang M Z, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 371(1-3), 91.
3 An S, Lee M W, Yarin A L, et al. Chemical Engineering Journal, 2018, 344, 206.
4 Zhu D Y, Rong M Z, Zhang M Q. Progress in Polymer Science, 2015, 49-50, 175.
5 White S R, Sottos N R, Geubelle P H, el al. Nature, 2001, 409, 794.
6 Jones A S, Dutta H. Mechanics of Materials, 2010, 42(4), 481.
7 Kessler M R, Sottos N R, White S R. Composites Part A:Applied Science and Manufacturing, 2003, 34(8), 743.
8 Kessler M R, White S R. Composites Part A:Applied Science and Manufacturing, 2001, 32, 683.
9 Akhtar S S. Ceramics International, 2021, 47(15), 20745.
10 Ullah H, Azizli K, Man Z B, et al. Procedia Engineering, 2016, 148, 168.
11 Li H Y, Li S, Li F B, et al. Journal of Colloid and Interface Science, 2018, 528, 92.
12 Farsadi M, Bagheri S, Ismail N A. Journal of Molecular Liquids, 2017, 244, 304.
13 Ren Y M, Zhu G M, Tang J N. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 584, 124073.
14 Jagtap S B, Mohan M S, Shukla P G. Polymer, 2016, 83, 27.
15 Yin D Z, Ma L, Liu J J, et al. Energy, 2014, 64, 575.
16 Yu S Y, Wang X D, Wu D Z. Applied Energy, 2014, 114, 632.
17 Long Y, Song K, York D, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 433, 30.
18 Jiang X, Luo R L, Peng F F, et al. Applied Energy, 2015, 137, 731.
19 Farbod M, Tadavani S K, Kiasat A. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1-3), 685.
20 Li H Y, Wang R G, Hu H L, et al. Applied Surface Science, 2008, 255(5), 1894.
21 Li K K, Li H Y, Cui Y X, et al. Industrial & Engineering Chemistry Research, 2019, 58(48), 22032.
22 Li H Y, Cui Y X, Li Z K, et al. Progress in Organic Coatings, 2018, 115, 164.
23 Konuklu Y, Paksoy H O, Unal M, et al. Energy Conversion and Management, 2014, 80, 382.
24 Li K K, Liu Z J, Wang C J, et al. Progress in Organic Coatings, 2020, 145, 105668.
25 Wu F, Li J F, Quan H, et al. Applied Surface Science, 2021, 542, 148561.
26 Li H Y, Feng Y Y, Cui Y X, et al. Progress in Organic Coatings, 2020, 145, 105684.
27 Li H Y, Li S, Li Z K, et al. Langmuir, 2017, 3(49), 14149.
28 Li H Y, Wang Q, Cui Y X, et al. Russian Journal of Applied Chemistry, 2017, 90 (3), 446.
29 Li H Y, Ma Y J, Li Z K, et al. RSC Advances, 2017, 7(79), 50328-50335.
30 Li H Y, Wang Q, Li M L, et al. Journal of Microencapsulation, 2016, 33(3), 286.
31 Lang S, Zhou Q X. Progress in Organic Coatings, 2017, 105, 99.
32 Li H Y, Cui Y X, Wang H Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 518, 181.
33 Li H Y, Wang Q, Wang H Y, et al. Macromolecular Materials and Engineering, 2016, 301(12), 1473.
34 Bandeira P, Monteiro J, Baptista A M, et al. Tribology International, 2016, 97, 478.
35 Li H Y, Ma Y J, Cui Y X, et al. Macromolecular Materials and Engineering, 2019, 304(4), 1800791.
36 Ma Y, Li Z K, Wang H Y, et al. Journal of Colloid Interface Science, 2019, 534, 469.
37 Roussaki M, Gaitanarou A, Diamanti P C, et al. Polymer Degradation and Stability, 2014, 108, 182.
38 Li H Y, Shi N Q, Ji J, et al. Materials Research Express, 2018, 5(5), 055302.
39 Navarchian A H, Najafipoor N, Ahangaran F. Progress in Organic Coa-tings, 2019, 132, 288.
40 Xiao C D, Shen X C, Tao L. International Journal of Pharmaceutics, 2013, 452(1-2), 227.
41 Chevalier Y, Bolzinger M A. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 439, 23.
42 Wu K Y, Chen Y X, Luo J, et al. Journal of Colloid Interface Science, 2021, 600, 660.
43 Yu F, Feng H Y, Xiao L H, et al. Progress in Organic Coatings, 2021, 155, 106221.
44 Ollier R P, Penoff M E, Alvarez V A. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 11, 27.
45 Zotiadis C, Patrikalos I, Loukaidou V, et al. Progress in Organic Coa-tings, 2021, 161, 106475.
46 Gao N, Yu J R, Chen S, et al. Synthetic Metals, 2021, 273, 116693.
47 Zhang Y B, Qiu Z S, Zhao X, et al. Journal of Molecular Liquids, 2021, 341, 117436.
48 Zhang X L, Guo Y D, Su J F, et al. Construction and Building Materials, 2018, 187, 1158.
49 Su J F, Qiu J, Schlangen E, et al. Construction and Building Materials, 2015, 74, 83.
50 Wang Y Y, Su J F, Schlangen E, et al. Construction and Building Materials, 2016, 121, 471.
51 Sun D W, Chong Y B, Chen K, et al. Chemical Engineering Journal, 2018, 346, 289.
52 Tleuova A, Schenderlein M, Mutaliyeva B, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 563, 359.
53 Ghorbani M, Ebrahimnezhad K H, Eslami F R, et al. Surfaces and Interfaces, 2021, 23, 100998.
54 Mirabedini S M, Dutil I, Gauquelin L, et al. Progress in Organic Coa-tings, 2015, 85, 168.
55 Pulikkalparambil H, Siengchin S, Parameswaranpillai J. Nano-Structures & Nano-Objects, 2018, 16, 381.
56 Boura S H, Perkari M, Ashrafi A, et al. Progress in Organic Coatings, 2012, 75(4), 292.
57 Cheng X G, Varona P L, Olszta M J, et al. Journal of Crystal Growth, 2007, 307(2), 395.
58 Bao Y, Yan Y, Chen Y, et al. Progress in Organic Coatings, 2019, 136, 105233.
59 Dong J H, Pan W H, Luo J, et al. Electrochimica Acta, 2020, 364, 137299.
60 Peña B, Panisello C, Aresté G, et al. Chemical Engineering Journal, 2012, 179, 394.
61 Ye Z P, Zhang P S, Zhang J H, et al. Progress in Organic Coatings, 2019, 127, 211.
62 Tang C X, Li Y Z, Pun J, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 570, 403.
63 Yao W, Bao Y, Chen Y. Medical Engineering & Physics, 2018, 56, 42.
64 Wang T Y, Jiang Y, Huang J, et al. Applied Energy, 2018, 218, 184.
[1] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[2] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[3] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[4] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[5] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[6] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[7] 王慧鹏, 李鹏, 江聪, 朱兴高, 赵运才. 国内自润滑关节轴承试验机研制现状及展望[J]. 材料导报, 2022, 36(Z1): 22030131-4.
[8] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[9] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[10] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[11] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[12] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[13] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[14] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[15] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed