Smart Self-healing Coatings Based on Corrosion Inhibitor Micro-/Nano-containers: a Review
WEI Yuankun1,2, ZHANG You1,*, ZHANG Zheng1, WANG Juping1, CHEN Fei1,3
1 College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China 2 Department of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China 3 Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
Abstract: Surface coating technologies are essential for corrosion protection. However, the application of passive protection coatings is limited under severe service conditions. Therefore, self-healing corrosion protection coatings are developed to meet specific industrial requirements, owing to their ability to independently, intelligently repair coating defects in response to changing environmental conditions. Self-healing coatings possess both active and passive protective abilities that effectively contribute to prolonging the service life of metal substrates (steel, magnesium, aluminum, and their alloys). This article covers the recent achievements in developing micro-/nano-containers for application in self-healing corrosion protection coatings. A wide variety of micro-/nano-containers with storage or release abilities for corrosion inhibitors has been employed in self-healing corrosion protection coatings. Micro-/nano-containers include inorganic ones, such as mesoporous nanoparticles (e.g., silica and titanium dioxide), inorganic clays (e.g., kaolinite, hydrotalcite, and zeolite), organic ones (e.g., polymer microcapsule, nanofiber, chitosan, and cyclodextrin), and carbon materials (e.g., carbon nanotube and graphene), as well as their diverse combinations. This article comprehensively summarizes the performance advantages and drawbacks of micro-/nano-containers. Finally, the existing problems and future developments of the smart self-healing coatings based on corrosion inhibitor micro-/nano-containers are also reviewed.
1 Hou B R, Li X G, Ma X M, et al. Npj Materials Degradation, 2017, 1(1), 4. 2 Yabuki A, Fathona I W. In: Advances in smart coatings thin films for future industrial biomedical engineering applications, Makhlouf A S H, Abu-Thabit N Y, ed., Elsevier, United States, 2020, pp.99. 3 Zhang F, Ju P, Pan M, et al. Corrosion Science, 2018, 144, 74. 4 Xu J B, Cao Y Q, Fang L, et al. Corrosion Science, 2018, 140, 349. 5 Mekeridis E, Kartsonakis I, Kordas G. Progress in Organic Coatings, 2012, 73 (2-3), 142. 6 Hasanzadeh M, Shahidi M, Kazemipour M. Progress in Organic Coa-tings, 2015, 80, 106. 7 Abdullayev E, Abbasov V, Tursunbayeva A, et al. ACS Applied Materials & Interfaces, 2013, 5(10), 4464. 8 Carneiro J, Caetano A F, Kuznetsova A, et al. RSC Advances, 2015, 5(50), 39916. 9 Ferrer E L, Rollon A P, Mendoza H D, et al. Microporous and Mesoporous Materials, 2014, 188, 8. 10 Mirmohseni A, Akbari M, Najjar R, et al. Journal of Applied Polymer Science, 2018, 136 (8), 47082. 11 Andreeva D V, Skorb E V, Shchukin D G. ACS Applied Materials & Interfaces, 2010, 2 (7), 1954. 12 Andreeva D V, Fix D, Mohwald H, et al. Advanced Materials, 2008, 20 (14), 2789. 13 Qian B, Song Z W, Hao L, et al. Materials and Corrosion, 2017, 68 (7), 717. 14 Falcon J M, Batista F F, Aoki I V. Electrochimica Acta, 2014, 124, 109. 15 Feng Y, Chen S G, Cheng Y F. Journal of Materials Science, 2017, 52 (14), 8576. 16 Chen T, Fu J J. Nanotechnology, 2012, 23 (23), 235605. 17 Ding C D, Ying L, Wang M, et al. Journal of Materials Chemistry A, 2016, 4 (21), 8041. 18 Kermannezhad, Kamran, Najafi, et al. Chemical Engineering Journal, 2016, 306, 849. 19 Zheng Z, Schenderlein M, Huang X, et al. ACS Applied Materials & Interfaces, 2015, 7 (41), 22756. 20 Chen T, Chen R, Jin Z, et al. Journal of Materials Chemistry A, 2015, 3(18), 9510. 21 Zheng Z, Huang X, Schenderlein M, et al. Advanced Functional Mate-rials, 2013, 23(26), 3307. 22 Wang T, Du J, Ye S, et al. ACS Applied Materials & Interfaces, 2019, 11(4), 4425. 23 Lamaka S V, Zheludkevich M L, Yasakau K A, et al. Progress in Orga-nic Coatings, 2007, 58, 127. 24 Lamaka S V, Zheludkevich M L, Yasakau K A, et al. Electrochemistry Communications, 2006, 8(3), 421. 25 Arunchandran C, George R P, Mudali U K,et al. Corrosion: the Journal of Science and Engineering, 2016, 72(4), 454. 26 Arunchandran C, Ramya S, George R P, et al. Journal of the Electrochemical Society, 2012, 159 (11), C552. 27 Balaskas A C, Kartsonakis I A, Tziveleka L A, et al. Progress in Organic Coatings, 2012, 74 (3), 418. 28 Adsul S H, Raju K R C S, Sarada B V, et al. Journal of Magnesium and Alloys, 2018, 6 (3), 299. 29 Manasa S, Jyothirmayi A, Siva T, et al. Journal of Coatings Technology and Research, 2017, 14 (5), 1195. 30 Adsul S H, Siva T, Sathiyanarayanan S, et al. Surface and Coatings Technology, 2017, 309, 609. 31 Kamburova K, Radeva T. Colloid and Polymer Science, 2018, 296 (7), 1157. 32 Dong C, Zhang M, Xiang T, et al. Journal of Materials Science, 2018, 53 (10), 7793. 33 Sun M, Yerokhin A, Bychkova M Y, et al. Corrosion Science, 2016, 111, 753. 34 Li W, Liu A, Tian H, et al. Colloid & Interface ence Communications, 2018, 24, 18. 35 Shkirskiy V, Keil P, Hintze-Bruening H, et al. ACS Appl Mater Interfaces, 2015, 7 (45), 25180. 36 Hayatdavoudi, Hadis, Rahsepar, et al. Journal of Alloys and Compounds, 2017, 711, 560. 37 Yan D, Wang Y, Liu J, et al. Journal of Alloys Compounds, 2020, 824, 153918. 38 Zhang Y, Yu P, Wu J, et al. Journal of Coatings Technology and Research, 2017, 15 (2), 303. 39 Liu J, Zhang Y, Yu M, et al. Progress in Organic Coatings, 2015, 81, 93. 40 Bendinelli E V, Aoki I V, Barcia O, et al. Materials Chemistry Physics, 2019, 238, 121883. 41 Alibakhshi E, Ghasemi E, Mahdavian M, et al. Journal of Cleaner Production, 2020, 251,119376. 42 Kartsonakis I A, Kordas G. Journal of the American Ceramic Society, 2010, 93 (1), 65. 43 Tavandasht N P, Sanjabi S. Progress in Organic Coatings, 2010, 69 (4), 384. 44 Snihirova D, Lamaka S V, Montemor M F. Electrochimica Acta, 2012, 83, 439. 45 Liu Y, Wang L, Zhang C, et al. Electrochemistry Letters, 2013, 2 (10), C39. 46 Hosseini M G, Aboutalebi K. Journal of Applied Polymer Science, 2019, 136 (15), 47297. 47 Adsul S H, Siva T, Sathiyanarayanan S, et al. Surface Coatings Technology, 2018, 352, 445. 48 Manasa S, Siva T, Sathiyanarayanan S, et al. Journal of Coatings Technology and Research, 2018, 15 (4), 721. 49 Rassouli L, Naderi R, Mahdavain M. Journal of Industrial and Enginee-ring Chemistry, 2018, 66, 221. 50 Zhang Y, Wang J P, Zhao S, et al. ACS Applied Materials & Interfaces, 2021, 13 (43), 51685. 51 Yang S, Wang J, Mao W Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2018, 555, 18. 52 Guo Y G, Wang J, Zhang D W, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019, 561, 1. 53 Guo J. Preparation technology investigation of in-situ polymerized PUF microcapsules. Master's Thesis, Wuhan Institute of Material Protection, China, 2019 (in Chinese). 郭靖.原位聚合脲醛树脂微胶囊制备技术研究. 硕士学位论文, 武汉材料保护研究所, 2019. 54 Siva T, Sathiyanarayanan S. Progress in Organic Coatings, 2015, 82, 57. 55 Shi H, Liu F, Han E H. Journal of Materials Science & Technology, 2015, 31 (5), 512. 56 Gite V V, Tatiya P D, Marathe R J, et al. Progress in Organic Coatings, 2015, 83, 11. 57 Bagale U D, Sonawane S H, Bhanvase B A, et al. Green Processing and Synthesis, 2018, 7 (2), 147. 58 Song Y, Chen K F, Wang J J, et al. Chinese Journal of Polymer Science, 2020, 38 (1), 45. 59 Choi H, Song Y K, Kim K Y, et al. Surface & Coatings Technology, 2012, 206, 2354. 60 Choi H, Kim K Y, Park J M. Progress in Organic Coatings, 2013, 76 (10), 1316. 61 Koh E, Lee S, Shin J, et al. Industrial & Engineering Chemistry Research, 2013, 52 (44), 15541. 62 Koh E, Park S. Progress in Organic Coatings, 2017, 109, 61. 63 Huang M X, Yang J L. Progress in Organic Coatings, 2014, 77 (1), 168. 64 Tavandashti N P, Ghorbani M, Shojaei A, et al. Corrosion Science, 2016, 112, 138. 65 Jadhav R S, Hundiwale D G, Mahulikar P P. Journal of Applied Polymer Science, 2011, 119 (5), 2911. 66 Jadhav R S, Mane V, Bagle A V, et al. International Journal of Industrial Chemistry, 2013, 4 (1), 1. 67 Huang Y, Deng L, Ju P, et al. ACS Applied Materials & Interfaces, 2018, 10 (27), 23369. 68 Dong Y H, Li S Y, Zhou Q. Progress in Organic Coatings, 2018, 120, 49. 69 Yabuki A, Kawashima A, Fathona I W. Corrosion Science, 2014, 85, 141. 70 Nawaz M, Habib S, Khan A, et al. New Journal of Chemistry, 2020, 44 (15), 5702. 71 Tavandashti N P, Ghorbani M, Shojaei A, et al. Progress in Organic Coatings, 2016, 99, 197. 72 Zheludkevich M L, Tedim J, Freire C S R, et al. Journal of Materials Chemistry, 2011, 21 (13), 4805. 73 Song J H, Cui X F, Liu Z, et al. Surface & Coatings Technology, 2016, 307, 500. 74 Jia Z, Xiong P, Shi Y, et al. Journal of Materials Chemistry B, 2016, 4 (14), 2498. 75 Carneiro J, Tedim J, Fernandes S C M, et al. Progress in Organic Coa-tings, 2012, 75, 8. 76 Khramov A N, Voevodin N N, Balbyshev V N, et al. Thin Solid Films, 2004, 447, 549. 77 Amiri S, Rahimi A. Journal of Coatings Technology and Research, 2016, 13 (6), 1095. 78 Amiri S, Rahimi A. Journal of Polymer Research, 2014, 21(10), 1. 79 Latnikova A, Grigoriev D, Schenderlein M, et al. Soft Matter, 2012, 8 (42), 10837. 80 Stankiewicz A, Jagoda Z, Zielińska K, et al. Materials and Corrosion, 2015, 66 (12), 1391. 81 Kopec M, Szczepanowicz K, Warszynski P, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 510, 2. 82 Kopec M, Szczepanowicz K, Mordarski G, et al. Progress in Organic Coatings, 2015, 84, 97. 83 Matsuda T, Jadhav N, Kashi K B, et al. Progress in Organic Coatings, 2016, 90, 425. 84 Snihirova D, Lamaka S V, Cardoso M M, et al. Electrochimica Acta, 2014, 145, 123. 85 Xiong W, Tang J, Zhu G, et al. Scientific Reports, 2015, 5, 10866. 86 Chang C H, Huang T C, Peng C W, et al. Carbon, 2012, 50 (14), 5044. 87 Montemor M F, Ferreira M. Surface & Coatings Technology, 2008, 202 (19), 4766. 88 Lanzara G, Yoon Y, Liu H, et al. Nanotechnology, 2009, 20 (33), 335704. 89 Hao Y S, Zhao Y F, Li B, et al. Corrosion Science, 2020, 163, 108246. 90 Asaldoust S, Ramezanzadeh B. Journal of Colloid Interface Science, 2020, 564, 230. 91 Yu Z X, Lyu L, Ma Y, et al. RSC Advances, 2016, 6 (22), 18217. 92 Nikpour B, Ramezanzadeh B, Bahlakeh G, et al. Corrosion Science, 2017, 127, 240. 93 Zhou C L, Li Z, Li J, et al. Chemical Engineering Journal, 2020, 385, 123835. 94 Shchukina E, Shchukin D. Grigoriev D. Progress in Organic Coatings, 2017, 102, 60. 95 Liang Y, Wang M, Wang C, et al. Nanoscale Research Letters, 2016, 11 (1), 231. 96 Zhang H R, Wang J X, Liu X X, et al. Industrial & Engineering Chemistry Research, 2013, 52 (30), 10172. 97 Mirabedini S M, Farnood R R, Esfandeh M, et al. Progress in Organic Coatings, 2020, 142, 105592. 98 Wang W, Wang H L, Zhao J, et al. Chemical Engineering Journal, 2019, 361, 792. 99 Liu C, Zhao H, Hou P, et al. ACS Applied Materials & Interfaces, 2018, 10 (42), 36229. 100 Chen C L, Xiao G Q, He Y, et al. Progress in Organic Coatings, 2020, 139, 105402. 101 Zhong F, He Y, Wang P Q, et al. Reactive & Functional Polymers, 2019, 145, 104380.