Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21050145-10    https://doi.org/10.11896/cldb.21050145
  高分子与聚合物基复合材料 |
基于缓蚀剂微/纳米容器的智能自修复涂层研究进展
卫元坤1,2, 张优1,*, 张政1, 王菊萍1, 陈飞1,3
1 北京石油化工学院新材料与化工学院,北京 102617
2 北京石油化工学院安全工程学院,北京 102617
3 特种弹性体复合材料北京市重点实验室,北京 102617
Smart Self-healing Coatings Based on Corrosion Inhibitor Micro-/Nano-containers: a Review
WEI Yuankun1,2, ZHANG You1,*, ZHANG Zheng1, WANG Juping1, CHEN Fei1,3
1 College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2 Department of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
3 Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing 102617, China
下载:  全 文 ( PDF ) ( 6966KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 涂层技术是常用的金属腐蚀防护手段。随着材料的服役环境日益严苛,采用传统的涂覆方法只能起到被动防护的作用,一旦涂层受损则会失效。近年来发展起来的智能自修复防腐涂层可根据环境变化自主修复涂层受损处,增强涂层的防护能力,延长金属基体(钢、镁、铝及其合金)的使用寿命。本文综述了国内外基于负载缓蚀剂的微/纳米容器的自修复涂层在金属腐蚀防护方面取得的最新成果,介绍了不同类型的微/纳米容器的特点及对缓蚀剂的负载与控制释放行为,包括介孔纳米颗粒(二氧化硅、二氧化钛等)、无机粘土(多水高岭石、类水滑石、沸石)等无机纳米容器,聚合物微胶囊、纳米纤维、壳聚糖、环糊精等有机纳米容器,碳纳米管、石墨烯等碳材料,以及多种微/纳米容器的复合应用,并对不同微/纳米容器的优点及缺点进行总结。最后,提出了基于缓蚀剂微/纳米容器自修复防腐涂层研究中存在的问题,并对其未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卫元坤
张优
张政
王菊萍
陈飞
关键词:  自修复涂层  微/纳米容器  缓蚀剂  腐蚀防护    
Abstract: Surface coating technologies are essential for corrosion protection. However, the application of passive protection coatings is limited under severe service conditions. Therefore, self-healing corrosion protection coatings are developed to meet specific industrial requirements, owing to their ability to independently, intelligently repair coating defects in response to changing environmental conditions. Self-healing coatings possess both active and passive protective abilities that effectively contribute to prolonging the service life of metal substrates (steel, magnesium, aluminum, and their alloys). This article covers the recent achievements in developing micro-/nano-containers for application in self-healing corrosion protection coatings. A wide variety of micro-/nano-containers with storage or release abilities for corrosion inhibitors has been employed in self-healing corrosion protection coatings. Micro-/nano-containers include inorganic ones, such as mesoporous nanoparticles (e.g., silica and titanium dioxide), inorganic clays (e.g., kaolinite, hydrotalcite, and zeolite), organic ones (e.g., polymer microcapsule, nanofiber, chitosan, and cyclodextrin), and carbon materials (e.g., carbon nanotube and graphene), as well as their diverse combinations. This article comprehensively summarizes the performance advantages and drawbacks of micro-/nano-containers. Finally, the existing problems and future developments of the smart self-healing coatings based on corrosion inhibitor micro-/nano-containers are also reviewed.
Key words:  self-healing coating    micro-/nano-container    corrosion inhibitor    corrosion protection
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG146  
  TG178.2  
基金资助: 北京市自然科学基金(2182017;2202017);北京市教委科技计划项目(KM201910017004);国家留学基金委公派访问学者项目(201908110124);北京石油化工学院大学生研究训练计划(2021J00134;2021J00135)
通讯作者:  *张优,北京石油化工学院副教授、硕士研究生导师。2010年7月本科毕业于中南大学,2015年7月在北京航空航天大学材料物理与化学专业取得博士学位,2019—2020年任德国亥姆霍兹吉斯达赫特材料与海洋研究中心访问学者、北京市腐蚀与防护学会理事。主要从事材料与装备的腐蚀及先进涂层制造技术研究工作,先后主持并参与国家自然科学基金、北京市自然科学基金、国防重点研发计划、航空基金、国内外企业横向课题10余项。近五年在ACS Applied Materials & Interfaces、Applied Surface Science等国内外高水平期刊发表论文30篇,获授权国家发明专利5项。youzhang@bipt.edu.cn   
作者简介:  卫元坤,2018年6月毕业于河南工程学院,获得学士学位。现为北京石油化工学院安全工程专业硕士研究生,在张优副教授的指导下进行研究。目前主要研究领域为金属的腐蚀监测与智能防腐涂层的制备及性能。
引用本文:    
卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
WEI Yuankun, ZHANG You, ZHANG Zheng, WANG Juping, CHEN Fei. Smart Self-healing Coatings Based on Corrosion Inhibitor Micro-/Nano-containers: a Review. Materials Reports, 2023, 37(8): 21050145-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050145  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21050145
1 Hou B R, Li X G, Ma X M, et al. Npj Materials Degradation, 2017, 1(1), 4.
2 Yabuki A, Fathona I W. In: Advances in smart coatings thin films for future industrial biomedical engineering applications, Makhlouf A S H, Abu-Thabit N Y, ed., Elsevier, United States, 2020, pp.99.
3 Zhang F, Ju P, Pan M, et al. Corrosion Science, 2018, 144, 74.
4 Xu J B, Cao Y Q, Fang L, et al. Corrosion Science, 2018, 140, 349.
5 Mekeridis E, Kartsonakis I, Kordas G. Progress in Organic Coatings, 2012, 73 (2-3), 142.
6 Hasanzadeh M, Shahidi M, Kazemipour M. Progress in Organic Coa-tings, 2015, 80, 106.
7 Abdullayev E, Abbasov V, Tursunbayeva A, et al. ACS Applied Materials & Interfaces, 2013, 5(10), 4464.
8 Carneiro J, Caetano A F, Kuznetsova A, et al. RSC Advances, 2015, 5(50), 39916.
9 Ferrer E L, Rollon A P, Mendoza H D, et al. Microporous and Mesoporous Materials, 2014, 188, 8.
10 Mirmohseni A, Akbari M, Najjar R, et al. Journal of Applied Polymer Science, 2018, 136 (8), 47082.
11 Andreeva D V, Skorb E V, Shchukin D G. ACS Applied Materials & Interfaces, 2010, 2 (7), 1954.
12 Andreeva D V, Fix D, Mohwald H, et al. Advanced Materials, 2008, 20 (14), 2789.
13 Qian B, Song Z W, Hao L, et al. Materials and Corrosion, 2017, 68 (7), 717.
14 Falcon J M, Batista F F, Aoki I V. Electrochimica Acta, 2014, 124, 109.
15 Feng Y, Chen S G, Cheng Y F. Journal of Materials Science, 2017, 52 (14), 8576.
16 Chen T, Fu J J. Nanotechnology, 2012, 23 (23), 235605.
17 Ding C D, Ying L, Wang M, et al. Journal of Materials Chemistry A, 2016, 4 (21), 8041.
18 Kermannezhad, Kamran, Najafi, et al. Chemical Engineering Journal, 2016, 306, 849.
19 Zheng Z, Schenderlein M, Huang X, et al. ACS Applied Materials & Interfaces, 2015, 7 (41), 22756.
20 Chen T, Chen R, Jin Z, et al. Journal of Materials Chemistry A, 2015, 3(18), 9510.
21 Zheng Z, Huang X, Schenderlein M, et al. Advanced Functional Mate-rials, 2013, 23(26), 3307.
22 Wang T, Du J, Ye S, et al. ACS Applied Materials & Interfaces, 2019, 11(4), 4425.
23 Lamaka S V, Zheludkevich M L, Yasakau K A, et al. Progress in Orga-nic Coatings, 2007, 58, 127.
24 Lamaka S V, Zheludkevich M L, Yasakau K A, et al. Electrochemistry Communications, 2006, 8(3), 421.
25 Arunchandran C, George R P, Mudali U K,et al. Corrosion: the Journal of Science and Engineering, 2016, 72(4), 454.
26 Arunchandran C, Ramya S, George R P, et al. Journal of the Electrochemical Society, 2012, 159 (11), C552.
27 Balaskas A C, Kartsonakis I A, Tziveleka L A, et al. Progress in Organic Coatings, 2012, 74 (3), 418.
28 Adsul S H, Raju K R C S, Sarada B V, et al. Journal of Magnesium and Alloys, 2018, 6 (3), 299.
29 Manasa S, Jyothirmayi A, Siva T, et al. Journal of Coatings Technology and Research, 2017, 14 (5), 1195.
30 Adsul S H, Siva T, Sathiyanarayanan S, et al. Surface and Coatings Technology, 2017, 309, 609.
31 Kamburova K, Radeva T. Colloid and Polymer Science, 2018, 296 (7), 1157.
32 Dong C, Zhang M, Xiang T, et al. Journal of Materials Science, 2018, 53 (10), 7793.
33 Sun M, Yerokhin A, Bychkova M Y, et al. Corrosion Science, 2016, 111, 753.
34 Li W, Liu A, Tian H, et al. Colloid & Interface ence Communications, 2018, 24, 18.
35 Shkirskiy V, Keil P, Hintze-Bruening H, et al. ACS Appl Mater Interfaces, 2015, 7 (45), 25180.
36 Hayatdavoudi, Hadis, Rahsepar, et al. Journal of Alloys and Compounds, 2017, 711, 560.
37 Yan D, Wang Y, Liu J, et al. Journal of Alloys Compounds, 2020, 824, 153918.
38 Zhang Y, Yu P, Wu J, et al. Journal of Coatings Technology and Research, 2017, 15 (2), 303.
39 Liu J, Zhang Y, Yu M, et al. Progress in Organic Coatings, 2015, 81, 93.
40 Bendinelli E V, Aoki I V, Barcia O, et al. Materials Chemistry Physics, 2019, 238, 121883.
41 Alibakhshi E, Ghasemi E, Mahdavian M, et al. Journal of Cleaner Production, 2020, 251,119376.
42 Kartsonakis I A, Kordas G. Journal of the American Ceramic Society, 2010, 93 (1), 65.
43 Tavandasht N P, Sanjabi S. Progress in Organic Coatings, 2010, 69 (4), 384.
44 Snihirova D, Lamaka S V, Montemor M F. Electrochimica Acta, 2012, 83, 439.
45 Liu Y, Wang L, Zhang C, et al. Electrochemistry Letters, 2013, 2 (10), C39.
46 Hosseini M G, Aboutalebi K. Journal of Applied Polymer Science, 2019, 136 (15), 47297.
47 Adsul S H, Siva T, Sathiyanarayanan S, et al. Surface Coatings Technology, 2018, 352, 445.
48 Manasa S, Siva T, Sathiyanarayanan S, et al. Journal of Coatings Technology and Research, 2018, 15 (4), 721.
49 Rassouli L, Naderi R, Mahdavain M. Journal of Industrial and Enginee-ring Chemistry, 2018, 66, 221.
50 Zhang Y, Wang J P, Zhao S, et al. ACS Applied Materials & Interfaces, 2021, 13 (43), 51685.
51 Yang S, Wang J, Mao W Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2018, 555, 18.
52 Guo Y G, Wang J, Zhang D W, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019, 561, 1.
53 Guo J. Preparation technology investigation of in-situ polymerized PUF microcapsules. Master's Thesis, Wuhan Institute of Material Protection, China, 2019 (in Chinese).
郭靖.原位聚合脲醛树脂微胶囊制备技术研究. 硕士学位论文, 武汉材料保护研究所, 2019.
54 Siva T, Sathiyanarayanan S. Progress in Organic Coatings, 2015, 82, 57.
55 Shi H, Liu F, Han E H. Journal of Materials Science & Technology, 2015, 31 (5), 512.
56 Gite V V, Tatiya P D, Marathe R J, et al. Progress in Organic Coatings, 2015, 83, 11.
57 Bagale U D, Sonawane S H, Bhanvase B A, et al. Green Processing and Synthesis, 2018, 7 (2), 147.
58 Song Y, Chen K F, Wang J J, et al. Chinese Journal of Polymer Science, 2020, 38 (1), 45.
59 Choi H, Song Y K, Kim K Y, et al. Surface & Coatings Technology, 2012, 206, 2354.
60 Choi H, Kim K Y, Park J M. Progress in Organic Coatings, 2013, 76 (10), 1316.
61 Koh E, Lee S, Shin J, et al. Industrial & Engineering Chemistry Research, 2013, 52 (44), 15541.
62 Koh E, Park S. Progress in Organic Coatings, 2017, 109, 61.
63 Huang M X, Yang J L. Progress in Organic Coatings, 2014, 77 (1), 168.
64 Tavandashti N P, Ghorbani M, Shojaei A, et al. Corrosion Science, 2016, 112, 138.
65 Jadhav R S, Hundiwale D G, Mahulikar P P. Journal of Applied Polymer Science, 2011, 119 (5), 2911.
66 Jadhav R S, Mane V, Bagle A V, et al. International Journal of Industrial Chemistry, 2013, 4 (1), 1.
67 Huang Y, Deng L, Ju P, et al. ACS Applied Materials & Interfaces, 2018, 10 (27), 23369.
68 Dong Y H, Li S Y, Zhou Q. Progress in Organic Coatings, 2018, 120, 49.
69 Yabuki A, Kawashima A, Fathona I W. Corrosion Science, 2014, 85, 141.
70 Nawaz M, Habib S, Khan A, et al. New Journal of Chemistry, 2020, 44 (15), 5702.
71 Tavandashti N P, Ghorbani M, Shojaei A, et al. Progress in Organic Coatings, 2016, 99, 197.
72 Zheludkevich M L, Tedim J, Freire C S R, et al. Journal of Materials Chemistry, 2011, 21 (13), 4805.
73 Song J H, Cui X F, Liu Z, et al. Surface & Coatings Technology, 2016, 307, 500.
74 Jia Z, Xiong P, Shi Y, et al. Journal of Materials Chemistry B, 2016, 4 (14), 2498.
75 Carneiro J, Tedim J, Fernandes S C M, et al. Progress in Organic Coa-tings, 2012, 75, 8.
76 Khramov A N, Voevodin N N, Balbyshev V N, et al. Thin Solid Films, 2004, 447, 549.
77 Amiri S, Rahimi A. Journal of Coatings Technology and Research, 2016, 13 (6), 1095.
78 Amiri S, Rahimi A. Journal of Polymer Research, 2014, 21(10), 1.
79 Latnikova A, Grigoriev D, Schenderlein M, et al. Soft Matter, 2012, 8 (42), 10837.
80 Stankiewicz A, Jagoda Z, Zielińska K, et al. Materials and Corrosion, 2015, 66 (12), 1391.
81 Kopec M, Szczepanowicz K, Warszynski P, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 510, 2.
82 Kopec M, Szczepanowicz K, Mordarski G, et al. Progress in Organic Coatings, 2015, 84, 97.
83 Matsuda T, Jadhav N, Kashi K B, et al. Progress in Organic Coatings, 2016, 90, 425.
84 Snihirova D, Lamaka S V, Cardoso M M, et al. Electrochimica Acta, 2014, 145, 123.
85 Xiong W, Tang J, Zhu G, et al. Scientific Reports, 2015, 5, 10866.
86 Chang C H, Huang T C, Peng C W, et al. Carbon, 2012, 50 (14), 5044.
87 Montemor M F, Ferreira M. Surface & Coatings Technology, 2008, 202 (19), 4766.
88 Lanzara G, Yoon Y, Liu H, et al. Nanotechnology, 2009, 20 (33), 335704.
89 Hao Y S, Zhao Y F, Li B, et al. Corrosion Science, 2020, 163, 108246.
90 Asaldoust S, Ramezanzadeh B. Journal of Colloid Interface Science, 2020, 564, 230.
91 Yu Z X, Lyu L, Ma Y, et al. RSC Advances, 2016, 6 (22), 18217.
92 Nikpour B, Ramezanzadeh B, Bahlakeh G, et al. Corrosion Science, 2017, 127, 240.
93 Zhou C L, Li Z, Li J, et al. Chemical Engineering Journal, 2020, 385, 123835.
94 Shchukina E, Shchukin D. Grigoriev D. Progress in Organic Coatings, 2017, 102, 60.
95 Liang Y, Wang M, Wang C, et al. Nanoscale Research Letters, 2016, 11 (1), 231.
96 Zhang H R, Wang J X, Liu X X, et al. Industrial & Engineering Chemistry Research, 2013, 52 (30), 10172.
97 Mirabedini S M, Farnood R R, Esfandeh M, et al. Progress in Organic Coatings, 2020, 142, 105592.
98 Wang W, Wang H L, Zhao J, et al. Chemical Engineering Journal, 2019, 361, 792.
99 Liu C, Zhao H, Hou P, et al. ACS Applied Materials & Interfaces, 2018, 10 (42), 36229.
100 Chen C L, Xiao G Q, He Y, et al. Progress in Organic Coatings, 2020, 139, 105402.
101 Zhong F, He Y, Wang P Q, et al. Reactive & Functional Polymers, 2019, 145, 104380.
[1] 杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
[2] 刘功起, 吴玉锋, 杨天伟, 李彬, 王朝辉. 垃圾焚烧炉关键服役材料发展现状及研究趋势[J]. 材料导报, 2021, 35(17): 17125-17135.
[3] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[4] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[5] 徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超. 电弧喷涂耐海水腐蚀金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13155-13159.
[6] 王业飞, 钱程, 杨震, 丁名臣, 王任卓. 新型喹啉季铵盐酸化缓蚀剂氯化苯甲酰甲基喹啉(PCQ)的合成及缓蚀性能[J]. 材料导报, 2019, 33(4): 699-704.
[7] 杨晋辉,刘泰,陈艳雪,王满,王洪媛,刘宏斌. 聚天门冬氨酸/盐的合成、改性及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1852-1862.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed