Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21050078-11    https://doi.org/10.11896/cldb.21050078
  金属与金属基复合材料 |
元胞自动机在金属材料腐蚀研究中的应用
张喜庆, 滕莹雪*, 郭菁
辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
Application of Cellular Automata in the Research of Metal Material Corrosion
ZHANG Xiqing, TENG Yingxue*, GUO Jing
School of Materials and Metallurgy,University of Science and Technology Liaoning,Anshan 114051, Liaoning,China
下载:  全 文 ( PDF ) ( 9650KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 长期以来,金属材料的腐蚀与防护是人们一直关注的问题。据发达国家调查,每年由于腐蚀造成的损失占国民经济总产值的2%~4%。因此,明确不同服役环境下金属材料的腐蚀状况且准确预测材料的使用寿命是保证生产安全、减少经济损失的重要手段。目前,金属腐蚀的研究方法虽然还主要以实验为主,但计算机技术为研究金属腐蚀提供了准确且直观的辅助手段,若将数值模拟技术和实验规律结合可大大加快研究进程。
元胞自动机(CA)方法具有直观、灵活、便捷的特点,其可以描述不同金属材料在不同环境下的腐蚀演变过程,并且能较为准确地还原自然界的腐蚀规律。近年来,学者们利用CA方法总结了材料腐蚀速度与温度、腐蚀性离子浓度等因素呈现正相关的规律,为了减少模拟结果的误差,学者们针对不同的腐蚀环境对影响参数也进行了优化。同时,学者们将腐蚀机理与演化规则进行合理的转化,提出了运动扩散规则,描述了多蚀坑融合研究过程,建立了典型的溶液介质回路模型,并对应力腐蚀和晶间腐蚀研究过程中所涉及的模型进行了重构。
本文通过总结CA在金属腐蚀方面所做的贡献,展示了CA在研究金属腐蚀机理方面的优势。同时,本文对CA方法所存在的局限性进行评注,对不可量化的影响因素给出了较为合理的量化建议,并对CA模型在金属材料腐蚀仿真方面可以进一步开展的工作进行了展望。本文旨在为金属腐蚀工作者们提供一种有效的研究手段,使更多的科研人员熟知CA在研究金属腐蚀机理方面的优势,促进模拟技术在金属腐蚀机理研究和寿命预测等方面发挥更积极的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张喜庆
滕莹雪
郭菁
关键词:  元胞自动机  局部腐蚀  金属材料  模拟仿真  腐蚀参数    
Abstract: The corrosion and protection of metal materials have historically been a concern. According to surveys in developed countries, the annual economic losses caused by corrosion account for approximately 2%—4% of GDP. Thus,clarifying the corrosion status of metal materials in different service environments and accurately predicting their service life is an important means of ensuring production safety and reducing economic losses.Although metal corrosion research methods are based mainly on experiments, computer technology provides accurate and intuitive auxiliary means of metal corrosion research. If numerical simulation technology is combined with experimental study, the research process can be greatly accelerated.
The cellular automata (CA) method is intuitive, flexible, and convenient. It can describe the corrosion evolution process of different metal materials in different environments, and can more accurately restore the corrosion laws of nature.In recent years, researchers have confirmed that the material corrosion rate is positively correlated with temperature, corrosive ion concentration, and other factors using the CA method. To reduce the error in simulation results, researchers have optimized the influencing parameters for different corrosive environments. They reasonably transformed the corrosion mechanism and the evolution rule, proposed the movement diffusion rule, described the research process of multi-corrosion pit fusion, and established a typical solution medium circuit model. The models involved in the study of stress corrosion and intergranular corrosion were reconstructed.
In this paper, the contribution of CA to metal corrosion is summarized, and the advantages of CA are shown in the study of the metal corrosion mechanism. The limitations of the CA method are described, reasonable quantitative suggestions are presented for unquantifiable influencing factors, and future CA model research is projected in the simulation of metal material corrosion. The purpose of this paper is to provide an effective research method for metal corrosion workers, familiarize more researchers with it, and promote simulation technology to play a more active role in metal corrosion mechanism research and service life prediction.
Key words:  cellular automata    local-corrosion    metal materials    simulation    corrosion parameters
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG430.20  
基金资助: 国家自然科学基金(52074149;U1860112);辽宁省教育厅项目(2020LNZD07;LJKZ0287);辽宁科技大学研究生课程思政示范课程建设项目(2020YJSCX18)
通讯作者:  *滕莹雪,博士后,副教授,辽宁科技大学硕士研究生导师,有色金属高级工程师(副高级职称)、化学工程高级工程师(副高级职称)。2001年于辽宁科技大学获得学士学位;2007年于东北大学获得硕士学位;2010年于东北大学获得博士学位;研究2010—2012年于中国科学院金属研究所进行博士后研究,主持和参与国家自然科学基金项目面上项目2项。长期从事金属的腐蚀与防护、复合镀层的制备、燃料电池催化剂等方面的研究,在国内外重要学术期刊上发表学术论文20余篇,专利10余项,并且编著《彩色涂层钢板的生产》一书。tengyingxue_2007@163.com   
作者简介:  张喜庆,辽宁科技大学材料与冶金学院硕士研究生,2020年于安徽省马鞍山学院获学士学位。于2020年师从滕莹雪副教授,研究领域为海洋或大气环境下金属材料局部腐蚀机理的探讨,并结合计算机方法对金属材料的腐蚀过程进行模拟开发研究,另与同校无机非金属方向的学生合作开展不同水泥混凝土中钢筋腐蚀的研究。
引用本文:    
张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
ZHANG Xiqing, TENG Yingxue, GUO Jing. Application of Cellular Automata in the Research of Metal Material Corrosion. Materials Reports, 2023, 37(8): 21050078-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050078  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21050078
1 Wolfarm S. Reviews of Modern Physics, 1983, 55(3), 601.
2 Liu Hongze. Evolution of elementary cellular automata and fuzzy cellular automata. Master's Thesis, Dalian Maritime University, China, 2006(in Chinese).
刘洪则. 初等元胞自动机的演化及模糊元胞自动机. 硕士学位论文, 大连海事大学, 2006.
3 Tang Qiang. Algorithm of cellular automaton based on polygonal neighborhood. Master's Thesis, Southwest University of Science and Technology, China, 2018(in Chinese).
唐强.多边形邻域元胞自动机算法研究.硕士学位论文, 西南科技大学, 2018.
4 Fatoba O O, Leiva-Garcia R, Lishchuk S V, et al. Corrosion Science,2018,137,83.
5 Gao Shiwu, Guo Dongxu, Ren Keliang, et al. Chinese Journal of Solid Mechanics,2013,33(S1),132 (in Chinese).
高士武, 郭东旭, 任克亮, 等. 固体力学学报, 2013, 33(S1), 132.
6 Cui Yanyu, Zhao Yuanyuan. Corrosion and Protection, 2018, 39(10),794 (in Chinese).
崔艳雨, 赵沅沅.腐蚀与防护, 2018, 39(10), 794.
7 He Leru, Yin Zhiping, Huang Qiqing, et al. Journal of Aeronautical Materials,2015,35(2),54 (in Chinese).
何乐儒, 殷之平, 黄其青, 等. 航空材料学报, 2015, 35(2), 54.
8 Yin Pengfei. Simulation of iron corrosion in liquid zinc based on Cellular automata method. Master's Thesis, Hebei University of Technology, China,2011(in Chinese).
尹鹏飞. 元胞自动机方法模拟纯铁在液锌中的腐蚀.硕士学位论文, 河北工业大学, 2011.
9 Liu Yaoqiang, Liu Jing. Chemical Machinery, 2012, 39(4), 487 (in Chinese).
刘耀强, 刘静. 化工机械, 2012, 39(4), 487.
10 Guo Zengwei, Chen Hanlin, Li Xiaogang,et al. Journal of Chongqing University,2019,42(9),19 (in Chinese).
郭增伟, 陈汉林, 黎小刚, 等.重庆大学学报, 2019, 42(9), 19.
11 Zhang Xiao, Hu Jun, Wang Yuqi, et al. Rare Metal Materials and Engineering,2015,44(10),2347.
12 Xu Zheyi. Total Corrosion Control, 2020, 34(1), 93(in Chinese).
徐哲轶. 全面腐蚀控制, 2020, 34(1), 93.
13 Lu Xing, Zeng Min, Ma Ting, et al. Journal of Engineering Thermophy-sics, 2016, 37(9), 2019 (in Chinese).
芦星, 曾敏, 马挺, 等. 工程热物理学报, 2016, 37(9), 2019.
14 Guo Dongxu. Simulation of metal corrosion based on three-dimensional cellular automaton method. Master's Thesis, Ningxia University, China, 2014(in Chinese).
郭东旭.基于三维元胞自动机方法的金属腐蚀损伤模拟.硕士学位论文. 宁夏大学, 2014.
15 Zhang Youhong, Lu Guozhi, Ren Keliang, et al. Acta Aeronautica Sinica, 2007(1), 142 (in Chinese).
张有宏, 吕国志, 任克亮, 等. 航空学报, 2007(1), 142.
16 Liu Rui, Cui Yu, Liu Li,et al. In: Summary of the 10th National Corrosion Conference. Nanchang, China, 2019, pp. 1(in Chinese).
刘叡, 崔宇, 刘莉, 等. 第十届全国腐蚀大会摘要集. 南昌, 2019, pp. 1.
17 Wang Xiaojuan, Zhu Baoquan, Wang Hongmei. Journal of System Simulation, 2010, 22(2), 534 (in Chinese).
王晓娟, 朱宝全, 王红梅.系统仿真学报, 2010, 22(2), 534.
18 Cui Chuanjie, Ma Rujin, Chen Airong, et al. Corrosion Science, 2019, 154, 80.
19 Xu H, David Y Y, Dan M F. Probabilistic Engineering Mechanics, 2019, 57,32.
20 Wu Guoqiang. Experimental study on stress corrosion and corrosion fatigue of stay cables under acid rain environment. Master's Thesis, Chongqing Jiaotong University, China,2015(in Chinese).
吴国强. 酸雨环境下斜拉索应力腐蚀与腐蚀疲劳试验研究. 硕士学位论文, 重庆交通大学, 2015.
21 Li Lei, Li Xiaogang, Xiao Kui, et al. Journal of Chinese Society for Corrosion and Protection, 2010, 30(2), 114(in Chinese).
李磊, 李晓刚, 肖葵, 等.中国腐蚀与防护学报, 2010, 30(2), 114.
22 Zhu Yongyan. The influence of sulfate-reducing bacteria and polarization potential on the stress corrosion cracking susceptibility of marine structural steel in sea mud.Ph.D. Thesis, The Institute of Oceanology, Chinese Academy of Sciences, China, 2007(in Chinese).
朱永艳.硫酸盐还原菌和极化电位对海洋结构用钢在海泥中的应力腐蚀开裂敏感性的影响.博士学位论文,中国科学院海洋研究所, 2007.
23 Yang Xiaojia, Shao Jiamin, Liu Zhiyong, et al. Corrosion Science, 2020, 173, 108746.
24 Abedi S S,Abdolmaleki A, Adibi N. Engineering Failure Analysis, 2007, 14(1), 250.
25 Cao Zhishuan.Computational simulation of the depth development of corrosion pit in the oil-tank bottom. Master's Thesis, China University of Petroleum (East China), China, 2013(in Chinese).
曹治栓. 油罐底板点蚀深度的数值模拟预测研究.硕士学位论文, 中国石油大学(华东), 2013.
26 Chen Mengcheng, Wen Qingqing. Journal of Chinese Society for Corrosion and Protection, 2018, 38(1),68 (in Chinese).
陈梦成, 温清清.中国腐蚀与防护学报, 2018, 38(1), 68.
27 Wang Yujun, Guo Andong, Zhao Shuang, et al. Total Corrosion Control, 2017, 31(8), 80(in Chinese).
王宇君, 郭安东, 赵爽, 等.全面腐蚀控制, 2017, 31(8), 80.
28 Zheng Yuqian.The research on damage evolution process of steel wires used in bridge cables under the coupling of corrosion and fatigue. Master's Thesis, Southeast University, China, 2019(in Chinese).
郑宇倩. 腐蚀-疲劳耦合作用下缆索钢丝的损伤劣化过程研究. 硕士学位论文, 东南大学, 2019.
29 Wang Hui, Lyu Guozhi, Zhang Youhong. Corrosion Science and Protection Technology, 2008, 20(6), 472(in Chinese).
王慧, 吕国志, 张有宏. 腐蚀科学与防护技术, 2008, 20(6), 472.
30 Wang Hui, Lyu Guozhi, Wang Le, et al. Acta Aeronautica Sinica, 2008(6), 1490(in Chinese).
王慧, 吕国志, 王乐, 等. 航空学报, 2008(6), 1490.
31 Wang Hui, Song Bifeng, Wang Le,et al. Acta Aeronautica Sinica,2009,30(11),2185(in Chinese).
王慧, 宋笔锋, 王乐, 等.航空学报, 2009, 30(11),2185.
32 Yuan Xiongjun, Zhang Qian, Zhou Ning, et al. Industrial Safety and Environmental Protection,2019,45(12),10 (in Chinese).
袁雄军, 张倩, 周宁, 等. 工业安全与环保, 2019, 45(12), 10.
33 Di Caprio D,Vautrin-Ul C, Stafiej J, et al. Corrosion Science, 2010, 53(1), 418.
34 Zhao Yuanyuan. Cellular automata simulations of corrosion damage evolution of aluminum. Master's Thesis, Civil Aviation University of China, China, 2018(in Chinese).
赵沅沅. 金属铝腐蚀损伤演化过程的元胞自动机模拟.硕士学位论文, 中国民航大学, 2018.
35 Wang Ning. Research on metal local corrosion damage ecolution based on cellular automata method. Master's Thesis, Civil Aviation University of China, China,2019(in Chinese).
王宁.基于元胞自动机法的金属局部腐蚀损伤演化研究.硕士学位论文, 中国民航大学, 2019.
36 Ramana M P, Long F, Mathew J P. Computational Materials Science,2007,41(3), 255.
37 Liu Jing, Li Zili, Hou Lei, et al. Chemical Machinery, 2011, 38(2), 206 (in Chinese).
刘静, 李自力, 侯蕾, 等. 化工机械,2011, 38(2), 206.
38 Li Zili, Liu Jing, Hao Ningmei, et al. Chemical Machinery, 2012, 39(3), 338 (in Chinese).
李自力, 刘静, 郝宁眉, 等化工机械, 2012, 39(3), 338.
39 Zhu Xiurong, Zhu Yongchun, Wang Lin, et al. Corrosion Science and Protection Technology, 2011, 23(4), 346 (in Chinese).
朱秀荣, 朱永春, 王琳, 等. 腐蚀科学与防护技术, 2011, 23(4), 346.
40 Mahmoud S S. Portugaliae Electrochimica Acta, 2008, 26, 245.
41 Montesinos J, Gorur R S, Mobasher B,et al. IEEE Transaction on Dielectrics and Electrical Insulation, 2002, 9, 236.
42 Hu Shan. A cellular automata simulation of the reclaimed water pipe corrosin. Master's Thesis, Tianjin University, China, 2018(in Chinese).
胡姗. 基于元胞自动机的再生水管道腐蚀模拟. 硕士学位论文, 天津大学, 2018.
43 Chen Huajun, Chen Yitung, Zhang Jinsuo. Progress in Nuclear Energy, 2008, 50(2-6), 587.
44 Jahns K, Balinski K, Landwehr M, et al. Materials and Corrosion, 2017, 68(2),125.
45 Guo X, Kang J, Zhu J. Journal of Materials in Civil Engineering, 2018, 30(11), 04018296.
46 Wang Haitao, Han Enhou. Corrosion Science, 2016, 103, 305.
47 Yu Xiaofei. Study of the intergranular corrosion of stainless steel(304, 306) by experimental and theoretical methods.Ph.D. Thesis,Shandong University, China,2010(in Chinese).
于晓飞. 304、316不锈钢晶间腐蚀的实验与理论研究. 博士学位论文, 山东大学, 2010.
48 Lishchuk S V, Akid R, Worden K, et al. Corrosion Science, 2011, 53(8), 2518.
49 Di Caprio D, Stafiej J, Luciano G, et al. Corrosion Science, 2016, 112, 438.
50 Guiso Simone, di Caprio Dung, de Lamare Jacques, et al. Corrosion Science, 2020, 177, 108953.
[1] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[2] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[3] 张敏, 郭宇飞, 黄超, 张立胜, 张文辉. Ti-6Al-4V三元合金焊接熔池凝固组织模拟[J]. 材料导报, 2021, 35(8): 8116-8120.
[4] 郝娟娟, 王乙舒, 吴玉峰, 郭福. 废线路板非金属材料回收利用技术现状与展望[J]. 材料导报, 2021, 35(7): 7001-7012.
[5] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[6] 吕斌, 李志强, 杨智勇, 刘小龙, 李卫京, 韩建民. 电渣重熔工艺对GCr15轴承钢凝固组织的影响[J]. 材料导报, 2021, 35(24): 24134-24141.
[7] 王瑞虎, 杨军, 邹德宁, 胡鹏, 向炜成. 金属材料微波烧结技术的研究进展[J]. 材料导报, 2021, 35(23): 23153-23161.
[8] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[9] 牛犇, 王镇华, 潘钱付, 刘超红, 王清, 董闯. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151.
[10] 卜红梅, 李肖蔚, 齐建涛, 李焰. 利用微电极阵列技术研究合金的腐蚀[J]. 材料导报, 2019, 33(23): 3963-3970.
[11] 方继恒, 刘曦, 谢明, 胡洁琼, 王松, 张吉明, 杨有才, 陈永泰, 王塞北, 李再久. 过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响[J]. 材料导报, 2019, 33(18): 3077-3084.
[12] 黎国猛, 梁益龙, 范航京, 张雄菲, 朱勇. 水射流喷丸预处理对42CrMo钢氮化后接触疲劳性能的影响[J]. 材料导报, 2019, 33(18): 3107-3112.
[13] 申琦, 余森, 牛金龙, 汶斌斌, 刘少辉, 于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
[14] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[15] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed