Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2127-2132    https://doi.org/10.11896/cldb.17100110
  材料与可持续发展(二)-材料绿色制造与加工* |
植介入用精细金属丝材及其异质材料焊接技术研究进展
申琦1,余森1,2,牛金龙1,汶斌斌1,刘少辉1,于振涛1,3
1 西北有色金属研究院,陕西省医用金属材料重点实验室,西安710016
2 西安交通大学金属强度国家重点实验室,西安710016
3 东北大学材料科学与工程学院,沈阳110819
Research Progress of Implanting Fine Metal Wires and Its Heterogeneous Materials Welding Technology
SHEN Qi1, YU Sen1,2, NIU Jinlong1, WEN Binbin1, LIU Shaohui1, YU Zhentao1,3
1 Northwest Institute for Nonferrous Metal Research, Shaanxi Key Laboratory of Biomedical Metal Materials, Xi'an 710016
2 State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710016
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 4229KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着生物医疗技术的不断进步以及微创手术的快速发展,植介入医疗器件对精细金属材料的需求量不断增加。医用导丝、心脏起搏器导线、功能性电刺激装置、牙矫正器、耳蜗植入装置等医疗器件,根据其植入尺寸及功能作用,都要求采用直径50~500 μm不等的精细丝材进行加工。传统医用金属丝材如316不锈钢、NiTi形状记忆合金、TC4等均含有Cr、Ni等毒性元素。这些医用金属丝材植入人体后,总会产生腐蚀与磨损,造成毒性元素的析出,极易引起炎症反应,对人体健康造成较大的危害。因此,近年来研究人员从选择合适的替代元素和优化制备工艺方面不断尝试改善医用金属丝材的性能,并取得了丰硕的成果,在保持高强低模的同时消除了毒性元素带来的危害。此后,出现了一批新型医用金属丝材,包括:Fe-17Cr-14Mn-2Mo-(0.45~0.7)N医用奥氏体不锈钢、Ti-22Nb-Fe合金、新型β钛合金等。
尺寸的细小化对医疗装置中常用的异种材料的焊接技术提出了更高的要求。异种材料焊接的难点在于异种丝材化学成分的差异使得焊接过程易形成脆性化合物,从而恶化接头性能、降低焊接可靠性。近几年,研究人员对比固相连接、钎焊连接、熔化焊连接等多种焊接方法,发现微激光焊接方法具有能量密度高、焊缝窄、热影响区小、焊接变形小、高温停留时间短、熔化金属量少、光束方向性好、能进行精密加工等特点,在焊接异种金属丝材时效果最好。同时通过工艺参数的优化、过渡层的填充、工装夹具的设计以及接头失效形式分析、焊接连接机理的讨论,研究人员主要对316LVM(Low-carbon vaccum melting)不锈钢丝材及TiNi形状记忆合金丝材异种金属材料微激光焊接进行了系统研究,并取得了一些研究成果,实现了异种丝材焊接接头可靠性的大幅提升。
本文系统梳理了医用金属丝材的发展及应用状况,针对异种精细金属丝材焊接的难点,从焊接方法、工艺研究及连接机理三个方面分别介绍了植介入用异种金属丝材焊接技术的研究进展,同时对该领域未来研究方向进行了总结与展望,以期为制备高可靠性的生物医用异质金属焊接接头提供帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申琦
余森
牛金龙
汶斌斌
刘少辉
于振涛
关键词:  植介入医疗器件  精细金属材料  异种材料  焊接  高可靠性    
Abstract: With the continuous advance of biomedical technology and the rapid development of minimally invasive surgery, implantation of medical devices on the demand for fine metal materials is increasing. Medical wire, cardiac pacemaker wire, functional electrical stimulation device, dental appliance, cochlear implant device and other medical devices, according to its implant size and function, require the use of fine wire whose diameter ranging from 50 μm to 500 μm for processing. Traditional medical wire materials such as 316 stainless steel, NiTi shape memory alloy, TC4, etc. all contain toxic elements such as Cr and Ni. When these medical wire materials are implanted into the human body, more or less they will be corroded and worn, causing the precipitation of toxic elements, which will easily cause an inflammatory reaction and cause a great hazard. Therefore, in recent years, researchers have continuously tried to improve the performance of medical wire materials by selecting suitable substitute elements and optimizing the preparation process. And they have achieved fruitful results, while maintaining high strength and low mold while eliminating the harm caused by toxic elements. A number of new medical wire materials have appeared: Fe-17Cr-14Mn-2Mo-(0.45—0.7)N medical austenitic stainless steel, Ti-22Nb-Fe alloy, new beta titanium alloy and so on.
Smaller size not only requires the performance of the material itself, but also a highly reliable welding technology, especially for the welding technology of dissimilar materials which commonly used in medical devices. The difficulty lies in the fact that the chemical composition of the diffe-rent kinds of wires makes the welding process easy to form brittle compounds, thereby deteriorating the joint performance and reducing the wel-ding reliability. In recent years, researchers have compared various welding methods such as solid-phase connection, brazed joint, and fusion-welded joint. It is found that the micro-laser welding method has high energy density, narrow weld seam, small heat-affected zone, small welding deformation, and high temperature retention. Short time, less amount of molten metal, good beam direction, and precision machining are the best results when welding dissimilar metal wires. At the same time, through the optimization of process parameters, the filling of the transition layer, the design of the fixture, the analysis of the joint failure form, and the discussion of the welding connection mechanism, the researchers mainly focused on 316LVM (low-carbon vaccum melting) stainless steel wire and TiNi shape memory alloy wire. Micro-laser welding of dissimilar metal materials have been systematically studied, and some research results have been obtained, which can greatly improve the reliability of dissimilar wire solder joints.
This paper systematically combs the development and application of medical metal wire materials. Aiming at the difficulties in welding dissimilar fine metal wire materials, the research progress of welding technology of dissimilar metal wire materials is introduced from three aspects: welding method, process research and connection mechanism. The future research direction of this field is summarized and forecasted, which can help to prepare high reliability biomedical heterogeneous metal welded joint.
Key words:  implants into medical devices    fine metal materials    dissimilar materials    welding    high reliability
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TG456.7  
基金资助: 国家重点研发专项(2016YFC1102003);陕西省重点科技创新团队(2016KCT-30);陕西省创新人才推进计划-青年科技新星项目(2018KJXX-026);陕西省国际合作基地项目(2017GHJD-014)
作者简介:  申琦,2017年1月毕业于东北大学,获得工学硕士学位。现就职于西北有色金属研究院生物材料研究所,主要从事医用金属材料的研究工作。
于振涛,西北有色金属研究院副总工、生物材料研究所所长、中国生物材料学会常务理事、教授、博士研究生导师。2001年于西安交通大学取得博士学位,1992年至今担任西北有色金属研究院生物材料研究所所长,2017年担任西北有色金属研究院副总工程师,生物材料领域特聘首席研究员。2013年入选陕西省首批重点领域(自然科学)顶尖人才,陕西省首届“五四青年奖章”获得者。近年来,在钛、镁、铝、锌等新材料设计研发、加工制备、组织与性能、大塑性变形及组织微纳米化控制、表面改性涂层设计制备等方面开展了大量应用和基础研究,并取得了大量系统性、创新性的研究成果,先后主持参加39项国家及省市级科研项目,获得省部级科技进步一、二等奖11项,申报各类国家发明专利78项,累计发表学术论文200余篇。
引用本文:    
申琦, 余森, 牛金龙, 汶斌斌, 刘少辉, 于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
SHEN Qi, YU Sen, NIU Jinlong, WEN Binbin, LIU Shaohui, YU Zhentao. Research Progress of Implanting Fine Metal Wires and Its Heterogeneous Materials Welding Technology. Materials Reports, 2019, 33(13): 2127-2132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17100110  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2127
1 Pequegnat A, Zhou Y.Joining & assembly of medical materials & devices, Woodhead Publishing Limited, UK, 2013.2 Gbur J L, Lewandowski J J.International Materials Reviews, 2016, 61(4), 231.3 Mantripragada V P, Leckaczernik B, Ebraheim N A, et al. Journal of Biomedical Materials Research Part A, 2013, 101(11), 3349.4 Wang G T, Bu M D.Heat Treatment of Metals, 2013, 38(1), 15 (in Chinese)王耘涛, 布茂东. 金属热处理, 2013, 38(1), 15.5 Huang Y D, Ke L M, Feng J C. Welding and Joining, 2012(7), 28 (in Chinese).黄永德, 柯黎明, 冯吉才,等. 焊接, 2012(7), 28.6 Ren Y B.Advanced Materials Industry,2015(7), 44 (in Chinese). 任伊宾. 新材料产业, 2015(7), 44.7 Saito T, Hokimoto S, Oshima S, et al. Cardiovascular Revascularization Medicine, 2009, 10(1), 17.8 Wan P, Ren Y, Zhang B, et al.Materials Science & Engineering C, 2010, 30(8), 1183. 9 Yuan Z S, Bai G L, Feng Z W, et al.Materials Review A: Review paper, 2009, 23(4), 86(in Chinese).袁志山, 白鸽玲, 冯昭伟, 等. 材料导报:综述篇, 2009, 23(4), 86.10 Al S.Journal of Endodontics, 2010, 36(2), 305.11 Zhang D C, Mao Y F, Li Y L, et al.Materials Science & Engineering A, 2013, 559(3), 706.12 Ma Y Q, Jin W J, Yang S Y, et al. Materials Science Forum, 2009, 610-613, 1382.13 Mitsuo Niinomi. Materials Transactions, 2008, 49(10), 2170. 14 Li H M, Lei T, Fang S M, et al.Metallic Functional Materials, 2011, 18(2), 70 (in Chinese).李红梅, 雷霆, 方树铭,等. 金属功能材料, 2011, 18(2), 70.15 Du Z X. Heat treatment and microalloying and high temperature deforation behavior of new beta high strength tianium alloy. Ph.D. Thesis, Harbin Institute of Technoloy, China, 2014 (in Chinese).杜赵新. 新型高强β钛合金的热处理和微合金化以及高温变形行为研究. 博士学位论文, 哈尔滨工业大学, 2014.16 Basehart A J, Jr D K C, Cleary J D, et al. E.U. patent, EP1819293, 2007. 17 Dai S J, Zhu Y T, Chen F.Journal of Chongqing Institute of Technology (Natural Science), 2016, 30(4), 27 (in Chinese).戴世娟, 朱运田, 陈锋. 重庆理工大学学报(自然科学), 2016, 30(4), 27.18 Li B Q, Cho K, Zhang H. In: ASME 2012 International Mechanical Engineering Congress and Exposition. Houston, 2012, pp. 91.19 Cowley A, Woodward B.Platinum Metals Review, 2011, 55(2), 98.20 Chen Y L, Yang D Y, Li J Y, et al.Journal of Harbin Institute of Technology, 2017, 49(5), 148(in Chinese).陈雨来, 杨东艳, 李静媛,等. 哈尔滨工业大学学报, 2017, 49(5): 148.21 Li W X, Xu C, Li Q, et al.The Chinese Journal of Nonferrous Metals, 2016, 26(5), 1045(in Chinese).李伟雄, 许赪, 李琼,等. 中国有色金属学报, 2016, 26(5), 1045.22 Ren Y B, Yang K. Rare Metal Materials & Engineering, 2014, 43(s1), 101(in Chinese).任伊宾, 杨柯. 稀有金属材料与工程, 2014, 43(s1), 101.23 Flanagan A. U.S. patent application, US6554854, 2003.24 Fukumoto S, Inoue T, Mizuno S, et al.Science & Technology of Welding & Joining, 2013, 15(2), 124.25 Li M G, Sun D Q, Qiu X M, et al. Science & Technology of Welding & Joining, 2007, 12(2), 183.26 Zhou Y.Microjoining and Nanojoining, CRC Press, Inc, Canada, 2008.27 Zou G S, Huang Y D, Pequegnat A, et al. Metallurgical & Materials Transactions A, 2012, 43(4), 1223.28 Gugel H, Schuermann A, Theisen W.Materials Science & Engineering A, 2008, 481-482(21), 668.29 Mirshekari G R, Saatchi A, Kermanpur A, et al.Optics & Laser Technology, 2013, 54(32), 151.30 Simpson J A, Dooley J F, Gillick M J. U.S. patent application, US20140200555, 2014.31 Yao L Y, Satoh G. U.S. patent application, US20140008335,2017. 32 Li H M. Study on laser welding of dissimilar materials between TiNi shape memory alloy and stainless steel. Ph.D. Thesis, Jilin University, China, 2011 (in Chinese).李洪梅. TiNi形状记忆合金与不锈钢异种材料激光焊研究. 博士学位论文, 吉林大学, 2011.33 Li H M, Sun D Q, Wang W Q, et al. Journal of Materials Engineering, 2010, 5(10), 9(in Chinese).李洪梅, 孙大千, 王文权,等. 材料工程, 2010, 5(10), 9.34 Sun D Q, Li H M. CN patent, CN201110037046.7, 2011.35 Zhang C, Zhao S, Sun X, et al.Corrosion Science, 2014, 82(5), 404.36 Vannod J, Bornert M, Bidaux J E, et al. Acta Materialia, 2011, 59(17), 6538.37 Li H M, Sun D Q, Wang W Q, et al. Materials Science and Technology, 2009, 17(Sup. 1), 143.李洪梅, 孙大千, 王文权, 等. 材料科学与工艺, 2009, 17(增刊1), 143.38 Panton B, Pequegnat A, Zhou Y N.Metallurgical & Materials Transactions A, 2014, 45(8), 3533.39 Vannod J, Hessler-Wyser A, Rappaz M. Mc Graz Materials Science, 2009, 3(5), 339.40 Brandal G, Satoh G, Yao Y L, et al.Journal of Manufacturing Science & Engineering, 2013, 135(6), 061006.41 Brandal G, Yao Y L, Naveed S. Journal of Manufacturing Science & Engineering, 2015, 137(3), O31015.42 Mirshekari G R, Saatchi A, Kermanpur A, et al. Journal of Materials Engineering & Performance, 2016, 25(6), 2395.43 Vannod J. Laser welding of nickel-titanium and stainless steel wires: Processing, metallurgy and properties. Ph.D. Thesis, Swiss federal Institute of Technology in Lausanne, Switzerland, 2011.44 Vannod J, Hessler-Wyser A, Rappaz M. In: EMC 2008 14th European Microscopy Congress. Aachen, 2008, pp. 501.45 Zeng Z, Zhou Z M, Li X B, et al.中国专利, CN201410449257.5, 2015.46 Huang Y D, He P, Lin T S, et al. Rare Metal Materials & Engineering, 2013, 42(10), 2079 (in Chinese).黄永德, 何鹏, 林铁松,等. 稀有金属材料与工程, 2013, 42(10), 2079.47 Huang Y D, Pequegnat A, Zou G S, et al.Metallurgical & Materials Transactions A, 2012, 43(4), 1234.
[1] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[2] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[3] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[4] 翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
[5] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[6] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[7] 薛松柏, 王博, 张亮, 龙伟民. 中国近十年绿色焊接技术研究进展[J]. 材料导报, 2019, 33(17): 2813-2830.
[8] 樊丁, 杨文艳, 肖磊. 大电流GMAW焊接飞溅和烟尘的形态及相结构分析[J]. 材料导报, 2019, 33(16): 2729-2733.
[9] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[10] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[11] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[12] 张聪惠,王 婧,宋 薇,王 洋,赵 旭,王耀勉. 高能喷丸处理工业纯钛焊接接头在10%HCl溶液中的腐蚀行为[J]. 《材料导报》期刊社, 2018, 32(9): 1564-1570.
[13] 樊江磊, 刘占云, 李育文, 吴深, 王霄, 刘建秀. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774-3779.
[14] 肖龙仁, 雷玉成, 朱强, 李天庆, 陈钢, 罗梦, 赵军, 陈文彬. 焊丝成分对T91/316L异种钢焊接接头微观组织和力学性能的影响[J]. 材料导报, 2018, 32(20): 3601-3605.
[15] 彭进, 王星星, 杨嘉佳, 李勇, 王孝虎. 单束与双束串行激光填丝焊特性对比[J]. 材料导报, 2018, 32(16): 2822-2827.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed