Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2813-2830    https://doi.org/10.11896/cldb.19050104
  材料与可持续发展(二)—材料绿色制造与加工* |
中国近十年绿色焊接技术研究进展
薛松柏1,王博1,张亮2,龙伟民3
1 南京航空航天大学材料科学与技术学院,南京 211106
2 江苏师范大学机电工程学院,徐州 221116
3 郑州机械研究所新型钎焊材料与技术国家重点实验室,郑州 450001
Development of Green Welding Technology in China During the Past Decade
XUE Songbai1, WANG Bo1, ZHANG Liang2, LONG Weimin3
1 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
2 School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221116
3 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 19643KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 “绿色制造”是中国制造2025的重要前提,绿色焊接是“绿色制造”的重要组成部分,是针对焊接行业中普遍存在的能源消耗大、资源有效利用率低等问题而提出的发展概念,其主要理念是研发并采用低排放、低污染的焊接材料、焊接工艺及新型高效、绿色的焊接方法。
   黑色金属主要指钢及不锈钢,其构件主要用于造船、汽车制造、电站设备、石油化工设备以及桥梁建设等大型构件。随着我国制造行业轻量化进程的不断加快,铝合金、镁合金以及钛合金等轻量化产品在各行各业的应用也越来越广泛。焊接技术作为装备制造领域的共性技术,已经成为影响黑色、有色金属在装备制造领域应用的关键技术之一。
   围绕黑色金属绿色焊接,船舶制造领域CO2气体保护焊用药芯焊丝逐渐取代实心焊丝;汽车制造领域为减轻车身质量,大幅采用热成形钢、镀锌钢以及铝/钢异种结构,主流的绿色焊接技术包括动态电阻中频自适应焊接技术、激光焊、搅拌摩擦焊等;火、水、核电站等大型构件主要采用的绿色焊接方法为热丝TIG焊、窄间隙热丝TIG焊、窄间隙埋弧焊以及多头熔化极气体保护焊等;石油化工设备制造多为现场焊接,对于球罐结构多采用焊接机器人进行焊接,对于海洋管道的维修和抢修,水下干式高压焊是比较成熟的高质量焊接方法,未来发展的重点是无潜式全自动海洋管道焊接维修系统;我国当前桥用结构钢已经发展到第六代桥梁钢Q500q钢,Q500q钢的发展带动了新型绿色药芯气体保护焊丝等焊接材料的成功研发。针对高铁、汽车、五金家电、电子行业等制造领域有色金属构件的焊接,可采用激光焊、高效电弧焊及激光-电弧复合焊、搅拌摩擦焊、新型绿色钎焊技术等诸多方法。
   本文综合评述了黑色、有色金属构件与熔化焊、压力焊、钎焊相关的新型高效绿色焊接方法及绿色焊接材料的研究进展。首先介绍了造船、汽车、电力、石油化工、桥梁建设等领域黑色金属大型构件的绿色焊接技术,以及每种焊接技术各自的特点和应用范围;然后综述了与有色金属构件相关的高铁、汽车制造、五金家电和电子行业等领域连接所涉及的绿色焊接技术,并对机器人自动化焊接、典型绿色焊接技术如激光-电弧复合能场焊、搅拌摩擦焊等以及绿色焊接材料如高铁制造用铝合金焊丝以及无镉低银、无铅钎料进行了简单举证与分析;最后整理了目前绿色焊接技术所存在的问题,并展望了未来的发展趋势,以期为我国绿色焊接技术在各行各业的进一步推广应用提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛松柏
王博
张亮
龙伟民
关键词:  绿色焊接技术  黑色金属  有色金属  绿色焊接材料    
Abstract: Green manufacturing is animportant prerequisite of achieving the goal of “Made in China in 2025”. Green welding is an important part of green manufacturing. Green welding is a development concept aiming at the common issues of high energy consumption and low effective utilization of resources in welding industries. Its main content is to develop and use green welding materials and technologies with low emission and low pollution, and new high-efficient green welding methods.
Ferrous metal mainly refers to steel and stainless steel. Their structure parts are mainly used in shipbuilding, automobile manufacturing, power plant equipment, petrochemical equipment, bridge construction and fabricating other large components. With the acceleration of lightweight process in Chinese manufacturing industry, the applications of lightweight non-ferrous metals such as aluminum alloy, magnesium alloy and tita-nium alloy are more and more widespread in all walks of life. As a generic technology, welding technology has become one of the key technologies affecting the application of ferrous and non-ferrous metals in the field of equipment manufacturing.
For green welding of ferrous metals,the solid welding wire used for CO2 gas shielded welding is gradually replaced by the flux-cored wire in the field of shipbuilding. In order to reduce the weight of automobile body, hot-formed steel, galvanized steel and aluminum/steel dissimilar structures are widely used in the field of automobile manufacturing. The mainstream green welding technologies in automobile manufacturing include dynamic electric resistance controlled medium frequency resistance spot welding, laser welding, friction stir welding and so on. The main green welding methods used in power plant construction (include thermal power, hydro power and nuclear power) are all-position TIG hot wire welding, narrow gap TIG hot wire welding, narrow gap submerged arc welding and multi-head gas shielded arc welding, etc. Field welding is widely used in the manufacture of petrochemical equipment. Arc welding robots are often used for spherical tank structures. For the maintenance and emergent repair of marine pipelines, underwater dry high-pressure welding is a relatively mature high-quality welding method and the future focus is on developing submersible full-automatic marine pipeline welding maintenance system. At present, bridge structural steel in China has already developed to the sixth generation of bridge steel-Q500q, which promotes the successful development of new green flux-cored gas shielded welding wire and other welding materials. For the welding of non-ferrous metal components in the fields of high-speed rail, automobile, hardware and household app-liances, many green welding methods such as laser welding, laser-arc hybrid welding, friction stir welding, new green brazing technology can be used to realize the green connection of non-ferrous metals.
In this paper, the research progress of new efficient green welding technologies and green welding materials related to melt welding, pressure welding and brazing for both ferrous and non-ferrous metal components were reviewed systematically. Firstly, the green welding technologies of large ferrous metal components in shipbuilding, automobile, electric power, petrochemical industry, bridge construction and other fields, as well as their respective characteristics and application scope were introduced. Then, green welding technologies of non-ferrous metal components related to high-speed train, automobile manufacturing, household appliances, electronics industry were summarized. Moreover, robot automatic welding, typical green welding technologies such as laser-arc hybrid welding, friction stir welding and green welding materials such as shaved aluminum alloy wire for high-speed train and low-silver, cadmium-free brazing filler metals and lead-free solders were simply exampled and analyzed. Finally, the existing problems and the future development trends of green welding technologies were summarized and proposed, respectively, which can provide a valuable reference for further popularization and application of green welding technologies in all walks of life in China.
Key words:  green welding technology    ferrous metal    non-ferrous metal    green welding materials
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TG44  
基金资助: 国家自然科学基金(51675269);江苏高校优势学科建设工程资助项目
作者简介:  薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士生导师。长期以来专注于焊接材料及焊接工艺的研究,制定五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。获得2016年国家科技进步奖二等奖、2014年教育部技术发明二等奖、国防科技进步奖三等奖、江苏省科技进步三等奖等。
王博,2012年毕业于南京航空航天大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院博士研究生,在薛松柏教授的指导下进行研究。目前主要研究领域为先进连接技术。
引用本文:    
薛松柏, 王博, 张亮, 龙伟民. 中国近十年绿色焊接技术研究进展[J]. 材料导报, 2019, 33(17): 2813-2830.
XUE Songbai, WANG Bo, ZHANG Liang, LONG Weimin. Development of Green Welding Technology in China During the Past Decade. Materials Reports, 2019, 33(17): 2813-2830.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050104  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2813
1 Committee of Beijing Essen Welding & Cutting Fair. In:Comprehensive technical report of the 23rd Beijing Essen Welding & Cutting Fair. Chinese Mechanical Engineering Society, Dongguan,China, 2018.北京·埃森焊接与切割展览会组委会. 第23届北京·埃森焊接与切割展览会展会综合技术报告.中国机械工程学会,东莞, 2018.2 Welding Technology, 2011, 40(12), 14 (in Chinese).焊接技术, 2011, 40(12), 14.3 Liu L M, Wang H Y. Aeronautical Manufacturing Technology, 2016(6), 16 (in Chinese).刘黎明, 王红阳. 航空制造技术, 2016(6), 16.4 Chinses Welding Society.China Welding: 1994—2016, China Machine Press, China, 2017 (in Chinese).中国机械工程学会焊接学会. 中国焊接: 1994—2016, 机械工业出版社, 2017.5 Liu P F, Zhang X, Wu L F. Metal Working, 2012(8), 17 (in Chinese).刘鹏飞, 张晓, 吴伦发. 金属加工(热加工), 2012(8), 17.6 Luo B, You D, Yan D H. China Water Transport, 2015, 15(9), 14 (in Chinese).罗滨, 尤栋, 闫大海. 中国水运(下半月), 2015, 15(9), 14.7 Bai S J, Wang C, Chen S J, et al. Journal of Beijing University of Technology, 2013, 39(5), 666 (in Chinese).白韶军, 王超, 陈树君, 等. 北京工业大学学报, 2013, 39(5), 666.8 Shan Q C. Electric Welding Machine, 2018, 48(8), 88 (in Chinese).单庆成. 电焊机, 2018, 48(8), 88.9 Feng Z, Zhang Z Y, Zhao G, et al. Hot Working Technology, 2017, 46(23), 15 (in Chinese).冯振, 张智源, 赵干, 等. 热加工工艺, 2017, 46(23), 15.10 Sharifian S A, Loukzadeh Z, Shojaoddiny-Ardekani A, et al. Acta Med Iran, 2011, 49(2), 98.11 Yang L J. Metal Working, 2016(4), 10 (in Chinese).杨立军. 金属加工(热加工), 2016(4), 10.12 Zhang J, Han W T, Chang Y Q, et al. Transactions of the China Welding Institution, 2015, 36(10), 9 (in Chinese).张静, 韩文妥, 常永勤, 等. 焊接学报, 2015, 36(10), 9.13 Yang Y T. Technology Innovation and Application, 2014(17), 12 (in Chinese).杨延廷. 科技创新与应用, 2014(17), 12.14 Sun W, Wang P. Boiler Manufacturing, 2013(2), 48 (in Chinese).孙伟, 王萍. 锅炉制造, 2013(2), 48.15 Cao F J, Chen S J, Du C C. Energy Procedia, 2018, 144, 9.16 Xu Y J, Li Y N. Electric Welding Machine, 2010, 40(2), 27 (in Chinese).徐祥久, 李宜男. 电焊机, 2010, 40(2), 27.17 Li Y. Science and Technology Innovation Herald, 2016, 13(21), 42 (in Chinese).李洋. 科技创新导报, 2016, 13(21), 42.18 Wang L, Du Y H. Welding & Joining, 2014(10), 48 (in Chinese).王莉, 杜玉华. 焊接, 2014(10), 48.19 Li H H. Electric Welding Machine, 2010, 40(2), 84 (in Chinese).李汉宏. 电焊机, 2010, 40(2), 84.20 Sun G H, Zhang L D. Power Equipment, 2016, 30(1), 35 (in Chinese).孙国辉, 张立德. 发电设备, 2016, 30(1), 35.21 Jiao X D. Modern Welding, 2016(8), 2 (in Chinese).焦向东. 现代焊接, 2016(8), 2.22 Jiao X D, Zhou C F. Metal Working, 2012(4), 8 (in Chinese).焦向东, 周灿丰. 金属加工(热加工), 2012(4), 8.23 Zheng J, Liu Z W, Pan J L. Defense Manufacturing Technology, 2009(3), 38 (in Chinese).郑军, 刘正文, 潘际銮. 国防制造技术, 2009(3), 38.24 Jiang L P, Xue L, Zou Y, et al. In: 15th National Welding Conference, Qinghai, 2010, pp. 8 (in Chinese).蒋力培, 薛龙, 邹勇, 等. 第十五次全国焊接学术会议,青海, 2010, pp. 8.25 Fang K. Chemical Engineering Design Communications, 2018, 44(9), 31 (in Chinese).方堃. 化工设计通讯, 2018, 44(9), 31.26 Jiao X D, Zhou C F, Xue L, et al. Transactions of the China Welding Institution, 2009, 30(11), 1 (in Chinese).焦向东, 周灿丰, 薛龙, 等. 焊接学报, 2009, 30(11), 1.27 Jiao X D, Zhou C F. Welding & Joining, 2015(12), 6 (in Chinese).焦向东, 周灿丰. 焊接, 2015(12), 6.28 Xu X J, Shan Y T. Metal Working, 2015(14), 70 (in Chinese).徐向军, 单亚庭. 金属加工(热加工), 2015(14), 70.29 Zhou L J, Hou D H, Jia H L, et al. Shandong Metallurgy, 2015, 37(1), 26 (in Chinese).周兰聚, 侯东华, 贾慧领, 等. 山东冶金, 2015, 37(1), 26.30 Xu X J, Bei Y C, Chang G G. Metal Working, 2015(16), 64 (in Chinese).徐向军, 贝玉成, 常国光. 金属加工(热加工), 2015(16), 64.31 Xu X J. Metal Working, 2016(8), 23 (in Chinese).徐向军. 金属加工(热加工), 2016(8), 23.32 Hou Y X, Xu R Z, Li H, et al. Hot Working Technology, 2019(5), 1 (in Chinese).侯艳喜, 徐荣正, 李慧, 等. 热加工工艺, 2019(5), 1.33 Feng J C, Wang Y R, Zhang Z D. The Chinese Journal of Nonferrous Metals, 2005(2), 165 (in Chinese).冯吉才, 王亚荣, 张忠典. 中国有色金属学报, 2005(2), 165.34 Chen Y B, Zhang K Z, Hu X, et al. Journal of Alloys and Compounds, 2016, 681, 175.35 Zhao Y B, Zhang X L, Li Z Q, et al. Electric Welding Machine, 2017, 47(2), 8 (in Chinese).赵耀邦, 张小龙, 李中权, 等. 电焊机, 2017, 47(2), 8.36 Li L Q, Peng G C, Wang J M, et al. International Journal of Heat and Mass Transfer, 2019, 133, 812.37 Hao X H, Dong H G, Li P, et al. Journal of Manufacturing Processes, 2019, 37, 413.38 Wang J D, Xu R Z, Guo X M. Hot Working Technology, 2018, 47(21), 15 (in Chinese).王金达, 徐荣正, 国旭明. 热加工工艺, 2018, 47(21), 15.39 Xiong L, He B L. Hot Working Technology, 2017, 46(13), 11 (in Chinese).熊磊, 何柏林. 热加工工艺, 2017, 46(13), 11.40 Li P, Dong H G, Xia Y Q, et al.Journal of Manufacturing Processes, 2018, 33, 54.41 Tian Y H, Jiang Z, Wang C X, et al.RSC Advances, 2016, 6(94), 91783.42 Long W M, Sun H W, Zhong S J, et al. Welding Technology, 2016, 45(5), 17 (in Chinese).龙伟民, 孙华为, 钟素娟, 等. 焊接技术, 2016, 45(5), 17.43 Liu W, An R, Wang C Q, et al. Micromachines, 2018, 9(7), 17.44 Wang B, Xue S B, Ma C L, et al.Transactions of Nonferrous Metals Society of China, 2017, 27(2), 272.45 Zhuang J W, Yan Q H, Zhang R M. Light Alloy Fabrication Technology, 2018, 46(6), 14 (in Chinese).庄景巍, 颜奇辉, 张瑞敏, 等. 轻合金加工技术, 2018, 46(6), 14.46 Xu X L, Zhu Y L, Li X Y, et al. Welding Technology, 2018, 47(10), 67 (in Chinese).徐晓龙, 朱艳丽, 李欣雨, 等. 焊接技术, 2018, 47(10), 67.47 Liu H W, Wang F K, Ma B, et al. Welding Technology, 2011, 40(1), 36 (in Chinese).刘红伟, 王法科, 马冰, 等. 焊接技术, 2011, 40(1), 36.48 Wang B, Xue S B, Ma C L, et al. Metals, 2017, 7(12), 520.49 林中强. 中国专利, CN 102699564B, 2012.50 Kulekci M K.The International Journal of Advanced Manufacturing Technology, 2008, 39(9), 851.51 Joost W J, Krajewski P E.Scripta Materialia, 2017, 128, 107.52 Song G, An G Y, Liu L M.Materials & Design, 2012, 35, 323.53 Li Y J, Wu N. Welding & Joining, 2010(3), 5 (in Chinese).李亚江, 吴娜. 焊接, 2010(3), 5.54 Dusan P S.Advances in brazing: science, technology and applications, China Machine Press, China, 2018 (in Chinese).杜森P.萨古利奇. 先进钎焊技术与应用, 机械工业出版社, 2018.55 Li J, Huang J K, Jin Q S.Electric Welding Machine, 2018, 48(1), 109 (in Chinese).李杰, 黄健康, 靳全胜. 电焊机, 2018, 48(1), 109.56 Zhang M J, Chen G Y, Zhang Y, et al. Materials & Design, 2013, 45, 24.57 Mei S W, Gao M, Yan J, et al.Science and Technology of Welding and Joining, 2013, 18(4), 293.58 Li M, Chen S H, Yang L L, et al. Transactions of the China Welding Institution, 2016, 37(12), 21 (in Chinese).李猛, 陈树海, 杨磊磊, 等. 焊接学报,2016, 37(12), 21.59 Huang J K, Yu Y L, He J, et al. Hot Working Technology, 2018, 47(5), 46 (in Chinese).黄健康, 于永龙, 何旌, 等. 热加工工艺, 2018, 47(5), 46.60 Huang Y X, Huang T F, Wan L, et al.Journal of Netshape Forming Engineering, 2018, 10(1), 23 (in Chinese).黄永宪, 黄体方, 万龙, 等. 精密成形工程, 2018, 10(1), 23.61 Wan L, Huang Y X, Liu X, et al. Welding & Joining, 2018(1), 12 (in Chinese).万龙, 黄永宪, 刘鑫, 等. 焊接, 2018(1), 12.62 Sun J R, Zhu H, Sun L, et al. Hot Working Technology, 2018, 47(5), 15 (in Chinese).孙金睿, 朱海, 孙龙, 等. 热加工工艺, 2018, 47(5), 15.63 Lv X Q, Wu C S, Yang C L, et al.Journal of Materials Processing Technology,2018, 254, 145.64 Wu M X, Wu C S, Gao S.Journal of Manufacturing Processes, 2017, 29, 85.65 Long W M, Zhang Q K, Zhu K, et al. Welding & Joining, 2014(1), 3 (in Chinese).龙伟民, 张青科, 朱坤, 等. 焊接, 2014(1), 3.66 Long W M, Sun H W, Bao L, et al. Welding Technology, 2016, 45(1), 59 (in Chinese).龙伟民, 孙华为, 鲍丽, 等. 焊接技术, 2016, 45(1), 59.67 Lai Z M. Effects of Ga/In and rare earth Ce on microstructures and properties of brazed joint of Ag30CuZnSn filler metal. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese).赖忠民. Ga/In与稀土Ce对Ag30CuZnSn钎料显微组织及钎焊接头性能影响的研究. 博士学位论文, 南京航空航天大学, 2011.68 Wang X P, Lai Z M, Xue S B, et al.Electric Welding Machine, 2009, 39(11), 1 (in Chinese).王星平, 赖忠民, 薛松柏, 等. 电焊机, 2009, 39(11), 1.69 Zhang T, Xue S B, Mao C L. Welding & Joining, 2014(10), 10 (in Chinese).张涛, 薛松柏, 马超力. 焊接, 2014(10), 10.70 Xue P, Zou Y, He P, et al. Metals, 2019, 9(2), 10.71 Ma C L, Xue S B, Wang B. Journal of Alloys and Compounds, 2016, 688, 854.72 Ma C L. Effect of Ga and Ce on the microstructures and properties of Ag17CuZnSn filler metals. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2017 (in Chinese).马超力. Ga、Ce对Ag17CuZnSn钎料组织及性能的影响. 博士学位论文, 南京航空航天大学, 2017.73 Hasap A, Noraphaiphipaksa N, Kanchanomai C.Welding Journal, 2014, 93(4), 116.74 Huang J, Xue S B, Wang B. Welding & Joining, 2014(11), 14 (in Chinese).黄杰, 薛松柏, 王博. 焊接, 2014(11), 14.75 Wang X R, Yu D K, He Y M, et al. Welding & Joining, 2013(2), 59 (in Chinese).王晓蓉, 余丁坤, 贺艳明, 等. 焊接, 2013(2), 59.76 Li X W, Zhang P, Wang F, et al. In: 2017 China Household Electric Appliance Technology Conference. Hefei, 2017, pp. 4 (in Chinese).李喜武, 张鹏, 王飞, 等. 2017年中国家用电器技术大会. 合肥, 2017, pp. 4.77 Wang X B. Guangdong Chemical Industry, 2016, 43(18), 115 (in Chinese).王新兵. 广东化工, 2016, 43(18), 115. 78 He P, Lin P P. Materials Reports A:Review Papers, 2019, 33(1), 156 (in Chinese).何鹏, 林盼盼. 材料导报:综述篇, 2019, 33(1), 156.79 Xue S B, He P. Microelectronics welding technology, China Machine Press, China, 2012 (in Chinese).薛松柏, 何鹏. 微电子焊接技术, 机械工业出版社, 2012.80 Xue P, Xue S B, Shen Y F, et al.Materials & Design, 2014, 60, 1.81 Sun L, Zhang L. Electronics Process Technology, 2015, 36(1), 4 (in Chinese).孙磊, 张亮. 电子工艺技术, 2015, 36(1), 4.82 Lin P, Yang S J.Physical Testing and Chemical Analysis (Part A: Physical Testing), 2013, 49(11), 752 (in Chinese).林鹏, 杨思佳. 理化检验(物理分册), 2013, 49(11), 752.83 Wu J, Xue S B, Wang J W, et al.Journal of Alloys and Compounds, 2019, 784, 471.84 Chen J X, Zhao X K, Liu D Y, et al.Journal of Materials Engineering, 2013(9), 91 (in Chinese).陈建勋, 赵兴科, 刘大勇, 等. 材料工程, 2013(9), 91.85 Chuang C L, Tsao L C, Lin H K, et al. Materials Science and Enginee-ring: A, 2012, 558, 478.86 Shi Y P, Xue S B, Wang J X, et al. Welding & Joining, 2007(4), 14 (in Chinese).史益平, 薛松柏, 王俭辛, 等. 焊接, 2007(4), 14.87 Zhang L, Sun L, Guo Y H. Journal of Materials Science: Materials in Electronics, 2015, 26(10), 7629.88 Zhang L, Tu KingNing, Chen X W, et al.Science China Technological Sciences,2016, 46(8), 767 (in Chinese).张亮, TU KingNing, 陈信文, 等. 中国科学:技术科学, 2016, 46(8), 767.89 Wu J, Xue S B, Wang J W, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(12), 12729.90 Liu X Y, Huang M L, Wu C M L, et al. Journal of Materials Science-Materials in Electronics, 2010, 21(10), 1046.91 Zhang L, Sun L, Guo Y H, et al. Journal of Jiangsu University (Natural Science Edition), 2015, 36(4), 458 (in Chinese).张亮, 孙磊, 郭永环, 等. 江苏大学学报(自然科学版), 2015, 36(4), 458 .92 Gao H, Yang H, Huang D H. Electronic Components and Materials, 2013, 32(1), 59 (in Chinese).高汉, 杨欢, 黄德欢. 电子元件与材料, 2013, 32(1), 59.93 Xu D X, Lei Y P, Zhang B B, et al. Electronic Components and Mate-rials, 2008(3), 68 (in Chinese).徐冬霞, 雷永平, 张冰冰, 等. 电子元件与材料, 2008(3), 68.94 Zhao X Q, Xiao W J, Yang H, et al. Electronic Components and Mate-rials, 2012, 31(3), 53 (in Chinese).赵晓青, 肖文君, 杨欢, 等. 电子元件与材料, 2012, 31(3), 53.95 Xiao W J, Zhao X Q, Wang L R, et al. Electronic Components and Materials, 2012, 31(6), 56 (in Chinese).肖文君, 赵晓青, 王丽荣, 等. 电子元件与材料, 2012, 31(6), 56.96 Zhu H Q, Zeng Y, Li S J. Guangdong Chemical Industry, 2016, 43(15), 64 (in Chinese).朱火清, 曾燕, 李世婕. 广东化工, 2016, 43(15), 64.97 Qin C Y, Li H P, Yang Y, et al.Applied Chemical Industry, 2013, 42(10), 1782 (in Chinese).秦春阳, 李海普, 杨鹰, 等. 应用化工, 2013, 42(10), 1782.98 Wang T, Zhang B G, Feng J C, et al.Materials Characterization, 2012, 73, 104.99 Song T F, Jiang X S, Mo D F, et al. Materials Reports:Review Papers, 2015, 29(11), 81 (in Chinese).宋庭丰, 蒋小松, 莫德锋, 等. 材料导报:综述篇, 2015, 29(11), 81.100 Liu K, Li Y J, Wang J.Materials and Manufacturing Processes, 2016, 31(16), 2165.101 Chu Q L. Fusion welding on TA1/Q345 laminated structure and joint microstructure evolution. Ph.D. Thesis, Xian University of Technology, China, 2017 (in Chinese).褚巧玲. TA1/Q345层状复合板焊接机理及其组织演变行为研究. 博士学位论文, 西安理工大学, 2017.102 Tomashchuk I, Grevey D, Sallamand P. Materials Science and Enginee-ring: A, 2015, 622, 37.103 Wang T, Zhang B G, Chen G Q, et al. Vacuum, 2013, 94, 41.104 Lee M K, Lee J G, Choi Y H, et al. Materials Letters, 2010, 64(9), 1105.105 Liao J S, Yamamoto N, Liu H, et al. Materials Letters, 2010, 64(21), 2317.106 Zhang R Z, Xia Y Q, Dong H G, et al. Welding Digest of Machinery Manufacturing, 2018(5), 1 (in Chinese).张润泽, 夏月庆, 董红刚, 等. 机械制造文摘(焊接分册), 2018(5), 1.
[1] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[2] 樊丁, 杨文艳, 肖磊. 大电流GMAW焊接飞溅和烟尘的形态及相结构分析[J]. 材料导报, 2019, 33(16): 2729-2733.
[3] 陈涛, 薛松柏, 翟培卓, 孙子建, 陈卫中, 郭佩佩. 基于图像处理的短路过渡焊熔池振荡特性分析[J]. 材料导报, 2019, 33(16): 2734-2739.
[4] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[5] 姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018, 32(20): 3584-3589.
[6] 邓云华, 岳喜山, 管志超. 304不锈钢消音蜂窝钎焊工艺、组织及力学性能分析[J]. 《材料导报》期刊社, 2018, 32(14): 2425-2430.
[7] 乔建毅,王文权,阮野,郭成伟. 环境温湿度对铝合金焊缝气孔和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 254-258.
[8] 周阳, 金秋, 龚小玲, 聂朝胤. Ni-金刚石复合涂层的结构优化及基础磨削性能*[J]. 《材料导报》期刊社, 2017, 31(20): 35-38.
[9] 陈鹏, 马国红, 平奇文. 通过预涂覆SiC优化AZ31B镁合金DE-GMAW焊缝的显微组织及提升力学性能*[J]. 《材料导报》期刊社, 2017, 31(20): 82-86.
[10] 程强, 何晓聪, 邢保英, 张越. 铝锂合金T型自冲铆接头疲劳特性及失效机理*[J]. 《材料导报》期刊社, 2017, 31(12): 84-88.
[11] 肖轶,顾剑锋,张俊喜,杨有利. 纳米CeO2对激光熔覆Fe/Cr3C2复合涂层组织与磨损性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 65-69.
[12] 黄勇,赵文强,张利尧. 粉末熔池耦合活性TIG焊接方法[J]. 材料导报编辑部, 2017, 31(22): 70-74.
[13] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed