Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3584-3589    https://doi.org/10.11896/j.issn.1005-023X.2018.20.016
  金属与金属基复合材料 |
TNW700高温钛合金热过程中的相组织变化分析
姚罡, 付明杰
中国航空制造技术研究院,北京 100024;
Analysis of Phase Change in the Thermal Process of TNW700 High-temperature Titanium Alloy
YAO Gang, FU Mingjie
AVIC Manufacturing Technology Institute,Beijing 100024;
下载:  全 文 ( PDF ) ( 4428KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用EPMA、SEM、EDS等测试手段分析了TNW700高温钛合金的相组织形态和元素分布,并利用原位X射线衍射(XRD)测试技术对该合金升温过程和热暴露过程中发生的相转变和表面氧化物进行了分析。结果表明TNW700高温钛合金是一种高铝当量合金,通过硅化物和α2的析出强化共同提高其抗蠕变持久性能。在升温过程中,600 ℃时Zr元素开始固溶至Ti中,并在900 ℃达到饱和;从880 ℃开始TiC、Ti3Al相随着温度升高而增多;700 ℃热暴露实验表明TNW700钛合金表面生成的氧化物以Ti6O、Ti3O为主,氧化物增加缓慢,没有大量的TiO2和Al2O3出现,合金短时内有良好的抗表面氧化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚罡
付明杰
关键词:  TNW700  高温钛合金  原位XRD  相转变    
Abstract: In this paper, the phase and element distribution of TNW700 titanium alloys were analyzed by means of EPMA (Electron probe microanalysis), SEM, EDS, etc. The phase transition and surface oxides of the alloy during heating process and thermal exposure were analyzed by using in-situ X-ray diffraction (XRD) technique. The result showed that the TNW700 titanium alloy is a high aluminum-equivalent alloy whose creep durability can be improved by the synergistic effect of precipitation strengthening of silicon and α2 phase. During the heating process, zirconium begins to dissolve into titanium forming solid solution at 600 ℃, and reaches saturation at 900 ℃ saturated. TiC and Ti3Al phases increase with the rising temperature exceeding 880 ℃. 700 ℃thermal exposure test confirmed that the generated surface oxides are mainly Ti6O and Ti3O with a low increment rate and only a little TiO2 and Al2O3 generated. It seems that the TNW700 alloy exhibits a satisfactory short-term resistance to high-temperature surface oxidation.
Key words:  TNW700    high-temperature titanium alloy    in-situ X-ray diffraction    phase transition
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TG44  
基金资助: 航空基金(KH361508116)
作者简介:  姚罡:男,1983年生,硕士,高级工程师,主要从事金相分析、结构分析和失效分析等 E-mail:miuke0083@139.com
引用本文:    
姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018, 32(20): 3584-3589.
YAO Gang, FU Mingjie. Analysis of Phase Change in the Thermal Process of TNW700 High-temperature Titanium Alloy. Materials Reports, 2018, 32(20): 3584-3589.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.016  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3584
1 Zhang H L. Microstructure and mechanical properties of a high temperature alloy for short-term use at 700 ℃ [D]. Harbin: Harbin Institute of Technology,2012(in Chinese).
张会亮.700 ℃短时用高温钛合金的组织性能研究[D].哈尔滨:哈尔滨工业大学,2012.
2 Mao X N, Zhao Y Q, Yang G J. Development situation of the overseas titanium alloys used for aircraft engine [J]. Rare Metals Letters,2007,26(5):1(in Chinese).
毛小南,赵永庆,杨冠军.国外航空发动机用钛合金的发展现状[J].稀有金属快报,2007,26(5):1.
3 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. Journal of Aeronautical Materials,2014,34(4):1(in Chinese).
王清江,刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1.
4 Cai J M, Cao C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy [J]. Journal of Aeronautical Materials,2014,34(4):27(in Chinese).
蔡建明,曹春晓.新一代600 ℃高温钛合金材料的合金设计及应用展望[J].航空材料学报,2014,34(4):27.
5 Lin P, Feng A H, Yuan S J, et al. Microstructure and texture evolution of a near-α titanium alloy during hot deformation[J]. Material Science & Engineering,2013,56(3):16.
6 Fu M J, Zhang T, Han X Q, et al. Super plastic deformation beha-vior of TNW700 titanium alloy sheet[J].Chinese Journal of Rare Metals,2016,40(1):1(in Chinese).
付明杰,张涛,韩秀全,等.TNW700高温钛合金板材超塑变形行为研究[J].稀有金属,2016,40(1):1.
7 Liu B S, Wu W. Experimental research on thermal forming limit of TNW700[J].Forging& Stamping Technology,2015,40(10):20(in Chinese).
刘宝胜,吴为.TNW700钛合金热成形极限试验研究[J].锻压技术,2015,40(10):20.
8 Dong F, He G Q, Zhang G T. Research development of the effect of Si element on titanium alloy[J]. Heat Treatment of Metals,2007,32(11):5(in Chinese).
董飞,何国强,张贵田.合金元素Si在钛合金中作用的研究进展[J].金属热处理,2007,32(11):5.
9 Hui S X, Zhang Z, Xiao J S, et al. Progress of research on thermal stability of high temperature titanium alloys[J]. Chinese Journal of Rare Metals,1999,23(2):125(in Chinese).
惠松骁,张翥,萧今声,等.高温钛合金热稳定性研究进展[J].稀有金属,1999,23(2):125.
10 Zhang S Z, Wang B, Liu Z Q, et al. Effect of carbon on microstructures and mechanical properties of Ti-60 high-temperature titanium alloy[J].Chinese Journal of Materials Research,2007,21(4):433(in Chinese).
张尚洲,王波,刘子全,等.碳对高温钦合金Ti-60组织和性能的影响[J].材料研究学报,2007,21(4):433.
11 Li D, Wan X J. On the thermal stability of Ti alloys[J]. Acta Me-tallurgica Sinica,1984,20(6):391(in Chinese).
李东,万晓景.钛合金热稳定性研究[J].金属学报,1984,20(6):391.
12 Zhang S Z, Liu G F, Wang G D, et al.Effect of carbon on microstructural stability of high-temperature titanium alloy[J].Transactions of Materials and Heat Treatment,2009,30(5):149(in Chinese).
张尚洲,刘高峰,王广东,等.碳对高温钛合金组织稳定性的影响[J].材料热处理,2009,30(5):149.
[1] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed