Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 65-69    https://doi.org/10.11896/j.issn.1005-023X.2017.022.013
  材料研究 |
纳米CeO2对激光熔覆Fe/Cr3C2复合涂层组织与磨损性能的影响*
肖轶1,2,顾剑锋1,张俊喜3,杨有利1
1 南通职业大学机械工程学院,南通 226007;
2 上海大学高品质特殊钢冶金与制备国家重点实验室,上海 200072;
3 上海电力学院上海市电力材料防护与新材料重点实验室,上海 200090
Effects of Nano-CeO2 Doping on Microstructure and Wear Performance of Laser clad Fe/Cr3C2Alloy Composite Coating
XIAO Yi1,2, GU Jianfeng1, ZHANG Junxi3, YANG Youli1
1 School of Mechanical Engineering, Nantong Vocational University, Nantong 226007;
2 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072;
3 Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090
下载:  全 文 ( PDF ) ( 696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)、显微硬度仪及滑动磨损试验,研究了1%纳米CeO2(质量分数)对低碳钢表面激光熔覆Fe/Cr3C2复合涂层的组织结构和耐磨性能的影响。结果表明,Fe+Cr3C2+1%CeO2复合涂层的主要组成相是α-Fe、γ-Fe、Cr3C2、Cr23C6及Cr7C3等化合物相;加入1%纳米CeO2后,复合涂层组织明显细化,未熔Cr3C2数量显著减少,初生碳化物由粗大杆状向块状转变,数量增加,分布均匀,有效抑制和消除了裂纹的形成;复合涂层硬度和耐磨性能显著提高,Fe+30%Cr3C2+1%CeO2涂层截面显微硬度提高105HV,增幅达到15.4%,且涂层沿深度方向硬度分布均匀性得到明显改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖轶
顾剑锋
张俊喜
杨有利
关键词:  纳米CeO2  激光熔覆  Fe基合金  Cr3C2  复合涂层  组织  耐磨性    
Abstract: The effects of 1% nano-CeO2 doping to the organizational structure and wear resistance of Fe/Cr3C2 composite coatings formed by using laser cladding on low-carbon steel surface has been researched in this paper with the aid of SEM, EDS, XRD, micro-hardness tester and sliding wearing test. Experimental results demonstrated that compound phases such as α-Fe, γ-Fe, Cr3C2, Cr23C6, Cr7C3, etc. are the main constituent phases of Fe+Cr3C2+1%CeO2 composite coatings. Composite coatings’ micro-structures were refined obviously after adding 1% nano-CeO2, and the quantities of non-cladding Cr3C2 reduced significantly, as well as the primary carbides transformed from coarse rod to block with risen quantity and uniform distribution, which effectively restrained and eliminated crack formation. The hardnesses and wear resistances of the Fe+Cr3C2+1%CeO2composite coatings were improved significantly, and in particular, the cross-sectional micro-hardness of Fe+30%Cr3C2+1%CeO2 coating was 105HV higher than that of Fe+30% Cr3C2 coating (increased by 15.4%). Meanwhile, the hardness distribution homogeneities of the doped coatings along depth direction gets improved apparently.
Key words:  nano-CeO2    laser cladding    Fe-based alloy coating    Cr3C2    composite coating    microstructure    wear resistance
发布日期:  2018-05-08
ZTFLH:  TG444.1  
基金资助: *江苏省高校“青蓝工程”资助项目(2016);江苏省高校青年教师企业实践计划项目(2016QYSJ037);江苏省大学生创新创业训练计划项目(201611052002Y)
作者简介:  肖轶:男,1980年生,博士,博士后,副教授,主要研究方向为金属材料表面改性与微观检测E-mail:xiaoyiphd@163.com
引用本文:    
肖轶,顾剑锋,张俊喜,杨有利. 纳米CeO2对激光熔覆Fe/Cr3C2复合涂层组织与磨损性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 65-69.
XIAO Yi, GU Jianfeng, ZHANG Junxi, YANG Youli. Effects of Nano-CeO2 Doping on Microstructure and Wear Performance of Laser clad Fe/Cr3C2Alloy Composite Coating. Materials Reports, 2017, 31(22): 65-69.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.013  或          https://www.mater-rep.com/CN/Y2017/V31/I22/65
1 Ma Yunzhe, Dong Shiyun, Xu Binshi, et al.Effect of CeO2 on microstructure and performance of laser cladding ni-based alloy coatings[J]. China Surf Eng, 2016,19(1):7(in Chinese).
马运哲,董世运,徐滨士,等. CeO2对激光熔覆Ni基合金涂层组织与性能的影响[J].中国表面工程, 2016,19(1):7.
2 Wang Kaiming, Lei Yongping, Wei Shizhong, et al.Effect of WC content on microstructure and properties of laser cladding Ni-based WC composite coating[J].Trans Mater Heat Treat, 2016,37(7):172(in Chinese).
王开明,雷永平,魏世忠,等.WC含量对激光熔覆Ni基WC复合涂层组织和性能的影响[J].材料热处理学报, 2016,37(7):172.
3 Chen J L, Li J, Song R, et al.Effect of the scanning speed on microstructural evolution and wear behaviors of laser cladding NiCrBSi composite coatings[J].Opt Laser Technol, 2015,72:86.
4 Wang Hongyu, Zuo Dunwen, Wang Mingdi, et al.Effects of nano-CeO2p on oxidation behaviors of NiCoCrAlY laser cladding coatings on Ni-based superalloys[J].Acta Metall Sin, 2009,45(8):971(in Chinese).
王宏宇, 左敦稳, 王明娣, 等. 纳米CeO2p对镍基高温合金表面NiCoCrAlY激光熔覆涂层氧化行为的影响[J].金属学报, 2009,45(8):971.
5 Li Ainong, Wei Chengling, Liu Jiaojiao, et al.Microstructure, Friction and wear properties of laser cladding[J].China Surf Eng, 2015,28(5):4923(in Chinese).
李爱农,魏成靓,刘娇姣,等.激光熔覆铁基Cr3C2/MoS2覆层的组织和摩擦磨损性能[J].中国表面工程, 2015,28(5):4923.
6 Pan Chenggang,Wang Huachang,Wang Hongfu,et al.Microstructure and thermal physical parameters of Ni60-Cr3C2 composite coating by laser cladding[J].J Wuhan University of Technology(Mater Sci Ed), 2010,25(6):991.
7 Peng Chengzhang, Liu Qiangqiang, Liu Ganhua. Influence of CeO2 on microstructure and performance of laser cladding Ni-based nano-Al2O3 composite coatings[J].Opt Tech, 2010,36(3):356(in Chinese).
彭成章,刘强强,刘赣华.稀土CeO2对镍基纳米Al2O3激光熔覆复合涂层组织和性能的影响[J].光学技术, 2010,36(3):356.
8 Zhang Guangyao, Wang Chenglei, Gao Yuan. Mechanism of rare earth CeO2 on the Ni-based laser cladding layer of 6063 Al surface[J]. Rare Met Mater Eng, 2016,45(4):1003(in Chinese).
张光耀,王成磊,高原.稀土CeO2在6063Al表面Ni基激光熔覆中的作用机制[J].稀有金属材料与工程, 2016,45(4):1003.
9 Zhang Lei, Chen Huahui, Zhao Huiyou, et al.Effects of CeO2 on structure and wear resistance of laser cladding WC-Co/Ni60B coating[J]. Tribology, 2008,28(6):485(in Chinese).
张蕾,陈华辉,赵会友,等. CeO2对WC-Co/Ni60B激光熔覆涂层组织和磨损性能的影响[J].摩擦学学报, 2008,28(6):485.
10 Li Yangliang, Pan Dong, Wang Hongtao, et al. Effect of rare earth element on microstructure and properties of laser clad Fe-based alloy coatings[J]. Trans Mater Heat Treat, 2013,34(3):145(in Chinese).
李养良,潘东,王洪涛,等.稀土对Fe基合金激光熔覆层组织性能的影响[J].材料热处理学报, 2013,34(3):145.
11 Shi Kaihua, Liu Xiaohu, Zhou Kechao, et al. Effect of carbon content and CeO2 addition on thermal properties and surface morphology of ultra-fine WC-9Ni-0.4Cr3C2 cemented carbide[J]. Rare Met Mater Eng, 2016,45(10):2593(in Chinese).
时凯华,刘小胡,周科朝,等. CeO2添加及碳含量对超细WC-9Ni-0.4Cr3C2硬质合金热性能与表面形态的影响[J].稀有金属材料与工程, 2016,45(10):2593.
12 Si Songhua, Xu Kun, Liu Yuelong, et al.Microstructure and performance of laser cladding Co+Cr3C2 composite coating[J]. Trans China Weld Ins, 2006,27(4):45(in Chinese).
斯松华,徐锟,刘月龙,等.激光熔覆Co+Cr3C2复合涂层的组织与性能[J].焊接学报, 2006,27(4):45.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[8] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[9] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[12] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[13] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[14] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[15] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed