Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 23010093-6    https://doi.org/10.11896/cldb.23010093
  无机非金属及其复合材料 |
季冻区纳米SiO2改性SAP路面混凝土的耐磨性
申爱琴*, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛
长安大学特殊地区公路工程教育部重点实验室,西安 710064
Abrasion Resistance of Modified SAP-Pavement-Concrete by Nano-SiO2 in Seasonal Frozen Area
SHEN Aiqin*, CHEN Rongwei, GUO Yinchuan, FAN Jianhang, DAI Xiaoqian, CHOU Tao
Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 8761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决季冻区高吸水性树脂(SAP)路面混凝土耐磨性下降的问题,通过耐磨性试验探索了纳米SiO2(NS)对季冻区SAP路面混凝土磨损量的影响;采用压汞仪(MIP)和扫描电镜(SEM)研究了冻融前后NS改性SAP路面混凝土孔结构和微观形貌的变化,从细微观角度阐述其耐磨性的提升机理;并对其微观结构与耐磨性进行相关性分析。研究结果表明,经150次冻融循环之后,掺有3% NS的改性SAP路面混凝土在200 N磨耗负荷下的磨损量较基准下降30.92%,20~50 nm的孔占比上升,50~200 nm的孔占比下降,总孔隙量和孔隙率减少,界面区裂缝数量和尺寸大幅降低,内部密实性程度显著提高,耐磨性明显增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申爱琴
陈荣伟
郭寅川
范建航
戴晓倩
丑涛
关键词:  季冻区  路面混凝土  纳米二氧化硅  高吸水性树脂  耐磨性    
Abstract: In order to solve the problem of the decrease in abrasion resistance of SAP-pavement-concrete in seasonal frozen area, the effect of nano-SiO2(NS) on the abrasion of SAP-pavement-concrete in seasonal frozen area was explored by abrasion resistance test. The pore structure and micromorphology variations of modified SAP-pavement-concrete by NS before and after freeze-thaw were analyzed by mercury intrusion pressure (MIP) and scanning electron microscopy (SEM). The enhancement mechanism of abrasion resistance was revealed from microscopic level. The relationship between pore size distribution and pore parameters with abrasion resistance were analyzed. The results show that after 150 freeze-thawing cycles, the abrasion amount of concrete modified by 3% NS decreases by 30.92% compared with JZ under 200 N load. Concurrently, there was an increase in the proportion of pores at the 20—50 nm, while the proportion of pores at 50—200 nm decreased. Additionally, total pore volume and porosity diminished, accompanied by a significant reduction in the number and size of interface cracks. Internal structure density was increased significantly,and the wear resistance was enhanced significantly.
Key words:  seasonal frozen area    pavement concrete    nano-SiO2    super absorbent polymer    abrasion resistance
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TU528  
通讯作者:  申爱琴,博士,长安大学二级教授、博士研究生导师。主要从事道路工程与材料性能的研究,公开发表论文180余篇,公开出版论著和教材6部,授权专利30余项。chdcuiniuniu@163.com   
引用本文:    
申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
SHEN Aiqin, CHEN Rongwei, GUO Yinchuan, FAN Jianhang, DAI Xiaoqian, CHOU Tao. Abrasion Resistance of Modified SAP-Pavement-Concrete by Nano-SiO2 in Seasonal Frozen Area. Materials Reports, 2024, 38(7): 23010093-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23010093  或          https://www.mater-rep.com/CN/Y2024/V38/I7/23010093
1 Shen D J, Wang X D, Jiang G Q. Construction and Building Materials, 2016, 106(106), 512.
2 Fan C X, Tian H. In: The 3rd International Conference on Civil Engineering and Transportation. Kunming, 2013, pp.204.
3 Hu X P, Peng G, Zhao N. Construction and Building Materials, 2019, 210, 22.
4 Lyu L H, Liu J Z. Journalof Northeast Forestry University, 2009, 37(10), 74(in Chinese).
吕丽华, 柳俊哲. 东北林业大学学报, 2009, 37(10), 74.
5 Pang L F, Ruan S Y, Cai Y T. Key Engineering Materials, 2011, 477, 200.
6 Tran H B, Phan V T A. Nanotechnology Reviews, 2022, 68(2), 391.
7 Yu L, Zhou C Y, Liu Z, et al. Construction and Building Materials, 2019, 208, 296.
8 Rajput B L, Pimplikar S S. In: The 3rd International Conference on Recent Advancesin Materials and Manufacturing. India, 2021, pp. 115.
9 Arasteh-Khoshbin O, Seyedpour S M, Ricken T. Scientific Reports. 2022, 12(1), 1118.
10 Cunha T A, Agostinho L B, Silva E F, et al. In: The 3rd International Conference on Application of Superabsorbent Polymers & Other New Admixtures Towards Smart Concrete. Skukuza, 2019, pp. 211.
11 Reis P F O, Evangelista F, Silva E F. Construction and Building Materials, 2020, 237, 117412.
12 Wang J Y. Research on anti-carbonization performance and prediction model of concrete using super absorbent polymer(SAP) as internal curing agent modified by nano-silica(NS). Master’s Thesis, Jiangsu University, China, 2021 (in Chinese).
王金元. 基于纳米SiO2改性下SAP内养护混凝土的抗碳化性能与预测模型研究. 硕士学位论文, 江苏大学, 2021.
13 Shen A Q, Yang J Y, Guo Y C, et al. Journal of Traffic and Transportation Engineering, 2021, 21(4), 1(in Chinese).
申爱琴, 杨景玉, 郭寅川, 等. 交通运输工程学报, 2021, 21(4), 1.
14 China Communications Construction Group Highway Consultants CO, LTD. Specifications for design of highway cement concrete pavement, JTG D40—2011, China Communications Press, China, 2011 (in Chinese).
中交公路规划设计院. 公路水泥混凝土路面设计规范, JTG D40—2011, 人民交通出版社, 2011.
15 Xiong J P, Shen A Q, Song T. Concrete, 2011(2), 134(in Chinese).
熊剑平, 申爱琴, 宋婷, 等. 混凝土, 2011(2), 134.
16 Rajput B, Pimplikar S S. Innovative Infrastructure Solutions, 2022, 7(2), 180.
17 Richardson I G, Groves G W. Journal of Materials Science. 1993, 28(1), 265.
18 Li H, Zhang M H, Ou J P. Wear. 2006, 260(11), 1262.
19 Singh G, Siddique R. Construction and Building Materials, 2012, 28(1), 421.
20 Chen X Y, Cheng Z Y, et al. Materials Reports, 2022, 36(S2), 191(in Chinese).
陈旭勇, 周启, 程子扬, 等. 材料导报, 2022, 36(S2), 191.
21 Liu X, Peng Z C, Pai C H, et al. Materials Reports, 2020, 34(22), 22078(in Chinese).
刘鑫, 彭泽川, 潘晨豪, 等. 材料导报, 2020, 34(22), 22078.
22 Guo Y C, Shen A Q, Zhai C W, et al. Journal of Chang’an University(Na-tural Science Edition) 2019, 39(6), 1(in Chinese).
郭寅川, 申爱琴, 翟超伟, 等. 长安大学学报(自然科学版), 2019, 39(6), 1.
23 Zou C. Study on design, performance and mechanism of nano modified concrete pavement materials. Master’s Thesis, Changsha University Of Science & Technology, China, 2016(in Chinese).
邹超. 纳米改性混凝土路面材料设计、性能及作用机理研究. 硕士学位论文, 长沙理工大学, 2016.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[3] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[4] 高吉昌, 门秀花, 姜帅, 付秀丽, 蒋振峰, 李艳. 高铬铸铁叶片堆焊工艺研究进展[J]. 材料导报, 2024, 38(17): 23050109-9.
[5] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[6] 顾春平, 双雨竹, 马俊涛, 周勇, 杨杨, 刘金涛, 金城阳. 水泥基材料自修复颗粒的制备及修复效果事前快速评价方法[J]. 材料导报, 2024, 38(15): 23020205-6.
[7] 朱志彬, 蒋丽, 李艳辉, 张伟. 高熵复合材料微观结构、力学性能及耐磨性研究进展[J]. 材料导报, 2024, 38(14): 23050131-12.
[8] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[9] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[10] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[11] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[12] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[13] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[14] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[15] 陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed