Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23050109-9    https://doi.org/10.11896/cldb.23050109
  金属与金属基复合材料 |
高铬铸铁叶片堆焊工艺研究进展
高吉昌1, 门秀花1, 姜帅1, 付秀丽1,*, 蒋振峰2, 李艳2
1 济南大学机械工程学院,济南 250000
2 淄博大亚金属科技股份有限公司,山东 淄博 255000
Progress of Surfacing Technology of High Chromium Cast Iron Blades
GAO Jichang1, MEN Xiuhua1, JIANG Shuai1, FU Xiuli1,*, JIANG Zhenfeng2, LI Yan2
1 School of Mechanical Engineering, University of Jinan, Jinan 250000, China
2 Zibo Taa Metal Technology Co., Ltd., Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 69302KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高铬铸铁因良好的耐磨损、强度、韧性及抗高温、耐腐蚀性能,常被应用于抛丸机叶片、大型挖泥泵叶轮、水泥球磨机耐磨衬板等受磨损冲击的器件,通常采用堆焊工艺对高铬铸铁工件的磨损表面进行修复,以延长其使用寿命,降低制造新工件时产生的资源消耗。本文综述了高铬铸铁叶片堆焊过程中焊接电流、层间温度、冷却条件等工艺参数对高铬铸铁堆焊层组织结构、晶粒大小的影响,讨论了钒、钛、铌、稀土纳米颗粒等合金粉末及由合金粉末制成的药芯焊丝对高铬铸铁堆焊层组织成分、组织结构的影响,对比了现有传统堆焊工艺缺陷,指出了堆焊加工工艺未来发展的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高吉昌
门秀花
姜帅
付秀丽
蒋振峰
李艳
关键词:  高铬铸铁  堆焊  叶片  加工参数  药芯焊丝  耐磨性    
Abstract: Because of its good wear resistance, high chromium cast iron is often used as shot blasting machine blade, large dredging pump impeller and other wear impact occasions. Fatigue damage of wear and crack on the surface of workpiece are usually repaired by stacking welding process to prolong their service life, significantly reduce the resource consumption generated by manufacturing new artifacts. This paper summarizes the influence of the process parameters and the performance of the hot metal welding tape. The influence of welding current, interlayer temperature and cooling condition on the tissue structure and grain size of high chromium cast iron stack and the influence of the welding wire containing vanadium, titanium, niobium and rare earth nanoparticles on the tissue composition and structure of high chromium cast iron stack are discussed respectively; compared with the existing traditional surfacing process, the future development direction of surfacing process is pointed out.
Key words:  high chromium cast iron    surfacing    blade    processing parameters    drug-core welding tape    wear resistance
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG455  
基金资助: 山东省自然科学基金重点项目(ZR2020KE022);山东省自然科学基金面上项目(ZR2021ME179);国家自然科学基金面上项目(52175408)
通讯作者:  *付秀丽,工学博士,教授,博士研究生导师。从事高速高效加工、超声强化改性、高端制造装备研发等方面的研究工作,主持国家自然科学基金3项,山东省重大创新工程、新旧动能转换重大、省基金重点项目等项目10余项;在《中国机械工程学报》、Advanced Manufacturing Technology等国内外学术期刊发表论文70余篇,其中被SCI、EI收录40余篇,授权发明专利10余项,成果获得山东省技术发明奖、省高校优秀科研成果奖等多项奖励。me_fuxl@ujn.edu.cn   
作者简介:  高吉昌,2022年6月于济南大学获得工学学士学位。现为济南大学机械工程学院硕士研究生,在付秀丽教授的指导下进行研究。目前主要研究方向为先进制造技术与装备。
引用本文:    
高吉昌, 门秀花, 姜帅, 付秀丽, 蒋振峰, 李艳. 高铬铸铁叶片堆焊工艺研究进展[J]. 材料导报, 2024, 38(17): 23050109-9.
GAO Jichang, MEN Xiuhua, JIANG Shuai, FU Xiuli, JIANG Zhenfeng, LI Yan. Progress of Surfacing Technology of High Chromium Cast Iron Blades. Materials Reports, 2024, 38(17): 23050109-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050109  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23050109
1 Wang B W, Chen X M, Su Y L, et al. Acta Aeronautica et Astronautica Sinica, 2021, 42(5), 6 (in Chinese).
王彬文, 陈先民, 苏运来, 等. 航空学报, 2021, 42(5), 6.
2 Zhang B, Wang X Q, Tian Y J, et al. Journal of Plasticity Engineering, 2023, 30(2), 16 (in Chinese).
张彪, 王晓强, 田英健, 等. 塑性工程学报, 2023, 30(2), 16.
3 Shaw K D. Materials Science and Engineering A, 2022, 463(2), 46.
4 Luan X S, Liang Z Q, Zhao W X, et al. Journal of Mechanical Engineering, 2023, 59(4), 34 (in Chinese).
栾晓圣, 梁志强, 赵文祥, 等. 机械工程学报, 2023, 59(4), 34.
5 Tian Y, Ma L W, Xi X L. Materials Reports, 2023, 37(3), 185 (in Chinese).
田娅, 马立文, 席晓丽. 材料导报, 2023, 37(3), 185.
6 Yu Y Q, Zhou L C, Gong J N, Surface Technology, 2022, 51(10), 38 (in Chinese).
俞延庆, 周留成, 宫健恩, 等. 表面技术, 2022, 51(10), 38.
7 Tang W Q, Luo J M, Chen Y H, et al. Transactions of Materials and Heat Treatment, 2023, 44(3), 144 (in Chinese).
唐伟清, 罗军明, 陈宇海, 等. 材料热处理学报, 2023, 44(3), 144.
8 Grabowski A, Sozańska M, Adamiak M, et al. Applied Surface Science, 2018, 461, 117.
9 Liao Y, Ye C, Cheng G J. Optics & Laser Technology, 2016, 78, 15.
10 Wu G, Wang Y, Sun M, et al. Journal of Laser Applications, 2020, 32(1), 12.
11 Lao X S, Zhao X F, Liu Y, et al. Materials Science Forum, 2020, 990, 73.
12 Cui Z D, Zhu J M, Jiang H, et al. Acta Metallurgica Sinica, 2022, 58(7), 837 (in Chinese).
崔振铎, 朱家民, 姜辉, 等. 金属学报, 2022, 58(7), 837.
13 Yu J, Cai C, Xie J, et al. Chinese Journal of Lasers, 2022, 49(16), 179(in Chinese).
余杰, 蔡创, 谢佳, 等. 中国激光, 2022, 49(16), 179.
14 Wang K M, Du D, Liu G, et al. Corrosion Science, 2020, 176, 108922.
15 Günther K, Bergmann J P, Suchodoll D. Surface and Coatings Technology, 2018, 334, 420.
16 Zhang H, He J P, Tang L L, et al. Results in Physics, 2019, 13, 102259.
17 Zhang H, Mei K T, Guo W S, et al. Journal of Materials Research and Technology, 2023, 13, 102259.
18 Vdovin K N, Emelyushin A N, Nefed'ev S P. Metal Science and Heat Treatment, 2017, 59, 5.
19 Gong M, Dai S J, Wang T.Machine Tool & Hydraulics, 2021, 49(2), 20 (in Chinese).
龚淼, 戴士杰, 王涛. 机床与液压, 2021, 49(2), 20.
20 Khamari B K, Dash S S, Karak S K, et al. Ironmaking & Steelmaking 2019, 47, 844.
21 Singh D K, Sahoo G, Basu R, et al. Journal of Manufacturing Processes, 2018, 36, 281.
22 Han J, Han Y Q, Sun Z B, et al. The International Journal of Advanced Manufacturing Technology, 2022, 123, 5.
23 Asif H, Shehbaz T, Nawaz K F, et al. SAGE Journals Home, 2022, 236, 9.
24 Vivas J, Fernández Calvo A I, Aldanondo E, et al. Journal of Manufacturing and Materials Processing, 2022, 6, 6.
25 Tong X, Wu G H, Zhang L, et al. Journal of Magnesium and Alloys, 2022, 10, 180.
26 Dennison A V, Toncich D J, Masood S. International Journal of Advanced Manufacturing Technology, 1997, 13(4), 256.
27 Wang Z M, Jiang D H, Wu J W, et al. Journal of Manufacturing Processes, 2020, 60, 503.
28 Wang Y J, Liu W H, Wang D Q, et al. Materials Science and Engineering A, 2021, 807, 140894.
29 Wang Q M, Tong X, Wu G H, et al. Materials Science & Engineering A, 2023, 869, 144816.
30 Praveen P, Kang M, Yarlagadda P. Journal of Achievements in Materials and Manufacturing Engineering, 2009, 32(2), 196.
31 Qin G L, Lei Z, Lin S Y. Science and Technology of Welding and Joining, 2007, 12(1), 79.
32 Fan X C, Qin G L, Jiang Z L, et al. Journal of Materials Research and Technology, 2023, 22, 17.
33 Zhou K, Yu W X, Wang G, et al. Journal of Materials Science, 2023, 58, 23.
34 Xu T. Cemented Carbides, 2011, 28(6), 396 (in Chinese).
徐涛. 硬质合金, 2011, 28(6), 396.
35 Lv H Y, Zhou R F, Li L, et al. Materials, 2018, 11, 1.
36 Liu G Y, Huang J K, Yu X Q, et al. Materials Reports, 2022, 36(12), 149 (in Chinese).
刘光银, 黄健康, 于晓全, 等. 材料导报, 2022, 36(12), 149.
37 Tong X, Wu G H, Easton M A, et al. Scripta Mater. 2022, 215, 114700.
38 Han J Y. Study on surfacing technology of ceramic particle reinforced high chromium cast iron composite. Master's Thesis, General Research Institute of Mechanical Sciences, China, 2021 (in Chinese).
韩佳源. 陶瓷颗粒增强高铬铸铁基复合材料堆焊工艺研究. 硕士学位论文, 机械科学研究总院, 2021.
39 Zhang J L, Wei J J, Wei S Z, et al. Journal of Materials Research and Technology, 2023, 23, 131417.
40 Dong B L, Cai X Y, Xia Y H, et al. Additive Manufacturing, 2021, 48, 102453.
41 Wang L Y, Zou J S, Zhu Z Y, et al. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(6), 23 (in Chinese).
王凌宇, 邹家生, 朱治愿, 等. 江苏科技大学学报(自然科学版), 2021, 35(6), 23.
42 Li L, Liu G Y, Wang P Y, et al. Development and Application of Materials, 2021, 36(5), 72 (in Chinese).
李利, 刘国元, 王鹏云, 等. 材料开发与应用, 2021, 36(5), 72.
43 Hu L, Wang X, Yin X H, et al. Acta Metallurgica Sinica, 2018, 54(12), 1767 (in Chinese).
胡磊, 王学, 尹孝辉, 等. 金属学报, 2018, 54(12), 1767.
44 Baruah M, Bag S. Journal of Materials Processing Technology, 2016, 213, 100.
45 Desai R S, Bag S. Journal of Manufacturing Processes, 2014, 16(2), 264.
46 Zhang J L, Wei J J, Wei S Z, et al. Materials Letters, 2022, 23, 4105.
47 Manvatkar V, De A, Svensson L E, et al. Scripta Materialia, 2015, 94, 36.
48 Nakarin S, Nuengruetai K, Trinet Y. Metals, 2019, 9(2), 244.
49 Sun J, He J, Deng D. Transactions of the China Welding Institution, 2016, 37(1), 63.
50 Huang M Z, Wang S Z, Wang Y M. Materials Protection, 2020, 53(8), 96 (in Chinese).
黄梦真, 王守忠, 王玉美. 材料保护, 2020, 53(8), 96.
51 Kan C L, Zhang X Y, Zhang X Q, et al. Hot Working Technology, 2020, 49(1), 41 (in Chinese).
阚成玲, 张骁勇, 张雪琴, 等. 热加工工艺, 2020, 49(1), 41.
52 Zhang J L, Wei J J, Wei S Z, et al. Tribology International, 2022, 174, 107732.
53 Wang Y, Gou J F, Chu R Q, et al. Tribology International, 2016, 103, 102.
54 Sapate S G, Rama R A V. Wear, 2004, 256, 774.
55 Qu Y, Xing J, Zhi X, et al. Materials Letters, 2008, 62, 3024.
56 Kojola N, Ekerot S, Andersson M, et al. Ironmak Steelmak, 2011, 38, 1.
57 Wang X L, Wang Y J, Liu L Y, et al. Shandong Science, 2021, 34(5), 42 (in Chinese).
王学亮, 王勇杰, 刘立艳, 等. 山东科学, 2021, 34(5), 42.
58 An Y J, Liu X Y, Zhu L. Chinese Rare Earths, 2020, 41(3), 86 (in Chinese).
安亚君, 刘先阳, 朱利. 稀土, 2020, 41(3), 86.
59 Qi X W, Jia Z N, Yang Q X, et al. Surface & Coatings Technology, 2011, 205, 5510.
60 Zhuang M H, Li X X, Ma Z, et al. Materials Today Communications, 2022, 33, 104696.
61 Liu A, Guo M, Hu H L. Surface Engineering, 2010, 26, 623.
62 Bedolla-Jacuinde A, Correa R, Mejia I, et al. Wear, 2007, 263, 808.
63 Wang X H, Zhang M, Du B S, et al. Materials Science and Technology-London, 2010, 26, 935.
64 Arikan M M, Ģimenğlu H C, Kayali E S, Wear, 2001, 247, 231.
65 Gong J X, Ding F, Tang T S, et al. Transactions of the China Welding Institution, 2013, 34(7), 17(in Chinese).
龚建勋, 丁芬, 唐天顺, 等. 焊接学报, 2013, 34(7), 17.
66 Ding F, Gong J X, Xiao Y F, et al. Hot Working Technology, 2013, 42(19), 21 (in Chinese).
丁芬, 龚建勋, 肖逸锋, 等. 热加工工艺, 2013, 42(19), 21.
67 Xian L Q, Zhuang M H, Chen C, et al. Materials Protection, 2022, 55(10), 64 (in Chinese).
线澜清, 庄明辉, 陈超, 等. 材料保护, 2022, 55(10), 64.
68 Liao L T, Wang H Y, Ning J P, et al. Mechanical & Electrical Engineering Technology, 2019, 48(8), 41 (in Chinese).
廖禄泰, 王海艳, 宁嘉沛, 等. 机电工程技术, 2019, 48(8), 41.
69 Buntoeng S, Hein Z O, Salita P, Wear, 2019, 424-425, 246.
70 Xu Y, Deng H M, Shan X H, et al. Hot Working Technology, 2017, 46(15), 194 (in Chinese).
许燕, 邓红敏, 单学海, 等. 热加工工艺, 2017, 46(15), 194.
71 Liu Q, Lu B H. Materials Reports, 2024, 38(9), 1 (in Chinese).
刘倩, 卢秉恒. 材料导报, 2024, 38(9), 1.
72 Deng D W, Chen R, Zhang H C. Journal of Mechanical Engineering, 2013, 49(7), 106 (in Chinese).
邓德伟, 陈蕊, 张洪潮. 机械工程学报, 2013, 49(7), 106.
73 Su Y H, Jiang H W, Qin H, et al. Transactions of the China Welding Institution, 2013, 34(4), 85 (in Chinese).
苏允海, 蒋焕文, 秦浩, 等. 焊接学报, 2013, 34(4), 85.
74 Liu C, Liu C, Su L. Surface Engineering, 2006, 22(3), 173.
75 Wu T L, Wang K H, Kong J, et al. Transactions of the China Welding Institution, 2018, 39(10), 20 (in Chinese).
吴统立, 王克鸿, 孔见, 等. 焊接学报, 2018, 39(10), 20.
76 Sheng L, Dai P, Jing T, et al. Metals, 2018, 8, 630.
77 Fan P F, Sun W L, Zhang G, et al. Hot Working Technology, 2019, 33(22), 3806 (in Chinese).
范鹏飞, 孙文磊, 张冠, 等. 热加工工艺, 2019, 33(22), 3806.
78 Han X, Li C, Chen X X, et al. Surface & Coatings Technology, 2022, 439, 128432.
[1] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[2] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[3] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[4] 朱志彬, 蒋丽, 李艳辉, 张伟. 高熵复合材料微观结构、力学性能及耐磨性研究进展[J]. 材料导报, 2024, 38(14): 23050131-12.
[5] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[6] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[7] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[8] 霍苗, 赵惠. 籽晶法制备高温合金单晶叶片的研究进展[J]. 材料导报, 2023, 37(17): 21120070-6.
[9] 赵吉康, 肖平安, 顾景洪, 钟斯远. TiCNp增强高铬铸铁复合材料的制备与性能[J]. 材料导报, 2023, 37(13): 21110021-5.
[10] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[11] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[12] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[13] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[14] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[15] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed