Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 23010118-14    https://doi.org/10.11896/cldb.23010118
  无机非金属及其复合材料 |
硅基SiC薄膜制备与应用研究进展
杨晨光, 王秀峰*
陕西科技大学材料科学与工程学院,西安 710021
Research Progress in Preparation and Application of Si-based Silicon Carbide Films
YANG Chenguang, WANG Xiufeng*
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
下载:  全 文 ( PDF ) ( 28771KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硅(SiC)材料具有极为优良的物理、化学及电学性能,可满足在高温、高腐蚀等极端条件下的应用,碳化硅还是极端工作条件下微机电系统(MEMS)的主要候选材料,成为国际上新材料、微电子和光电子领域研究的热点。同时,碳化硅有与硅同属立方晶系的同质异形体,可与硅工艺技术相结合制备出适应大规模集成电路需要的硅基器件,因此用硅晶片作为衬底制备碳化硅薄膜的工作受到研究人员的特别重视。本文综述了近年来国内外硅基碳化硅薄膜的研究现状,就其制备方法进行了系统的介绍,主要包括各种化学气相沉积(Chemical vapor deposition,CVD)法和物理气相沉积(Physical vapor deposition,PVD)法,并归纳了对硅基碳化硅薄膜性能的研究,包括杨氏模量、硬度、薄膜反射率、透射率、发光性能、电阻、压阻、电阻率和电导率等,以及其在微机电系统传感器、生物传感器和太阳能电池等领域的应用,最后对硅基碳化硅薄膜未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晨光
王秀峰
关键词:  硅基碳化硅薄膜  化学气相沉积  物理气相沉积  微机电系统传感器  生物传感器  太阳能电池    
Abstract: Silicon carbide(SiC) material has excellent physical, chemical and electrical properties, which can meet the application under extreme conditions such as high temperature and high corrosion. SiC is also the main candidate material for MEMS under extreme working conditions, and has become a hot research topic in the field of new materials, microelectronics and optoelectronics in the world. At the same time, silicon carbide has homogeneous isomers that belong to the same cubic crystal system as silicon, and can be combined with silicon technology to produce silicon based devices that meet the needs of large-scale integrated circuits. Therefore, the work of preparing silicon carbide films using silicon wafers as substrates has received special attention from researchers. This paper summarizes the research status of Si-based SiC films at home and abroad in recent years, and systematically introduces their preparation methods, mainly including various chemical vapor deposition(CVD) methods and physical vapor deposition(PVD) methods, and summarizes the properties of Si-based SiC films, including Young’s modulus, hardness, film reflectivity, film transmittance, luminescence performance, resistance, piezoresistance, resistivity and conductivity, as well as their applications in fields such as MEMS sensors, biosensors and solar cells. Finally, looking forward to the future development of Si-based SiC films.
Key words:  Si-based SiC films    chemical vapor deposition    physical vapor deposition    MEMS sensors    biosensors    solar cells
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TB34  
通讯作者:  王秀峰,陕西科技大学二级教授、博士研究生导师。1982年毕业于西北大学,获得学士学位;1987年毕业于中国地质大学(北京),获得硕士学位;1997年毕业于西安交通大学,获得博士学位。近年来,在国内外知名学术期刊发表论文200余篇,授权发明专利100余件,主要研究方向为陶瓷材料、电子材料。553159292@qq.com   
作者简介:  杨晨光,2017年7月毕业于西安建筑科技大学,获得工学学士学位。现为陕西科技大学材料科学与工程学院硕士研究生,在王秀峰教授的指导下进行研究。目前主要研究领域为电子材料。
引用本文:    
杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
YANG Chenguang, WANG Xiufeng. Research Progress in Preparation and Application of Si-based Silicon Carbide Films. Materials Reports, 2024, 38(7): 23010118-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23010118  或          https://www.mater-rep.com/CN/Y2024/V38/I7/23010118
1 Esteves G, Habermehl S D, Clews P J, et al. Journal of Microelectromechanical Systems, 2019, 28(5), 859.
2 Dinh T, Nguyen T K, Phan H P, et al. Advanced Engineering Materials, 2019, 21(3), 1801049.
3 Kociubiński A, Bieniek T, Janczyk G. In: 8th International Conference New Electrical and Electronic Technologies and Their Industrial Implementation(NEET). Zakopane, 2014, pp. 1374.
4 Wang J Y, Deng C G, Ma Y, et al. The Journal of Light Scattering, 2017, 29(4), 376(in Chinese).
王靖宇, 邓春纲, 马瑶, 等. 光散射学报, 2017, 29(4), 376.
5 Ye C, Ran G, Zhou W, et al. Nanomaterials, 2017, 7, 408.
6 Mao K L, Wang Y M, Li B, et al. Electronics Process Technology, 2017, 38(3), 128 (in Chinese).
毛开礼, 王英民, 李斌, 等. 电子工艺技术, 2017, 38(3), 128.
7 Sun Q Y, Yang M J, Li J, et al. Journal of the American Ceramic Society, 2019, 102(8), 4480.
8 Cai L Y, Xu Q F, Lu W Z, et al. Ceramics International, 2020, 46(10), 16518.
9 Liu Z Z, Xu Q F, Sun Q Y, et al. Thin Solid Films, 2019, 678, 8.
10 Guo H, Yang X Y, Xu Q F, et al. Journal of Alloys and Compounds, 2020, 826, 154198.
11 Li Z X, Huang J L, Xie C P, et al. Atomic Energy Science and Technology, 2022, 56(7), 1473(in Chinese).
李子曦, 黄景林, 谢春平, 等. 原子能科学技术, 2022, 56(7), 1473.
12 Sha B, Lukianov A N, Dusheiko M G, et al. Optical Materials, 2020, 106, 109959.
13 Wen G Z. Journal of Wuhan Polytechnic University, 2019, 38(3), 46(in Chinese).
文国知. 武汉轻工大学学报, 2019, 38(3), 46.
14 Lukianov A N, Klyui N I, Sha B, et al. Journal of Alloys and Compounds, 2019, 801, 285.
15 Hsu Y L, Chang Y F, Chung W M, et al. Applied Physics Letters, 2020, 116, 213502.
16 Jha H S, Agarwal P. Journal of Materials Science: Materials in Electro-nics, 2015, 26(3), 1381.
17 Tehrani F S. Bulletin of Materials Science, 2015, 38(5), 1333.
18 Tehrani F S. Journal of Materials Science: Materials in Electronics, 2016, 27(11), 11457.
19 Zhang Z Y, Zhao W, Wang X W, et al. Materials Science and Enginee-ring, 2000, 75, 177.
20 Beisenov R, Ebrahim R, Mansurov Z A, et al. Eurasian Chemico-Technological Journal, 2013, 15, 25.
21 Zuo R, Zhang H, Liu X L. Journal of Crystal Growth, 2006, 293, 498.
22 Mousa H, Yildirim M A, Teker K. Semiconductor Science and Technology, 2019, 34, 095002.
23 Chen H F, Xue Y J. Surface Technology, 2016, 45(10), 56(in Chinese).
陈海峰, 薛莹洁. 表面技术, 2016, 45(10), 56.
24 Liu M, Yang Y, Mao Q, et al. Ceramics International, 2021, 47(17), 24098.
25 Tavsanoglu T, Zayim E O, Agirseven O, et al. Thin Solid Films, 2019, 674, 1.
26 Kefif K, Bouizem Y, Belfedal A, et al. Optik, 2018, 154, 459.
27 Liu J F, Liu Z L, Wang K F, et al. Chinese Journal of Vacuum Science and Technology, 2007, 27(1), 5(in Chinese).
刘金锋, 刘忠良, 王科范, 等. 真空科学与技术学报, 2007, 27(1), 5.
28 Juluri R R, Gaiduk P, Hansen J L, et al. Thin Solid Films, 2018, 662, 103.
29 Schiller S, Metzner C, Zywitzki O. Surface and Coatings Technology, 2000, 125, 240.
30 Hu B B, He X X, Xu S F, et al. Journal of Hefei University of Technology, 2015, 38(3), 351 (in Chinese).
胡冰冰, 何晓雄, 许世峰, 等. 合肥工业大学学报(自然科学版), 2015, 38(3), 351.
31 Kukushkin S A, Osipov A V. In: 25th International Conference on Vacuum Technique and Technology. Petersburg, 2018, pp. 012044.
32 Kukushkin S A, Osipov A V, Feoktistov N A. Physics of the Solid State, 2014, 56(8), 1507.
33 Kidalov V V, Kukushkin S A, Osipov A V, et al. ECS Journal of Solid State Science and Technology, 2018, 7(4), 158.
34 Nawaz A, Islam B, Mao W G, et al. International Journal of Applied Ceramic Technology, 2019, 16(2), 706.
35 Frischmuth T, Schneider M, Maurer D, et al. Thin Solid Films, 2016, 611, 6.
36 Singh N, Kaur D. In: International Conference on Condensed Matter and Applied Physics. Roorkee, 2016, pp. 020653.
37 Liu X, Zhao Q N, Zhang Z H, et al. Bulletin of the China Ceramic Society, 2018, 37(10), 3049(in Chinese).
刘翔, 赵青南, 张泽华, 等. 硅酸盐通报, 2018, 37(10), 3049.
38 Wang X H, Yoshida T. Acta Materiae Compositae Sinica, 2005, 22(1), 74 (in Chinese).
王新华, Yoshida T. 复合材料学报, 2005, 22(1), 74.
39 Jin Q L, Li G L, Wang H D, et al. Surface Technology, 2015, 44(12), 127(in Chinese).
靳巧玲, 李国禄, 王海斗, 等. 表面技术, 2015, 44(12), 127.
40 He G T, Liu B, Dai J P, et al. Semiconductor Optoelectronics, 2016, 37(6), 805 (in Chinese).
何国堂, 刘斌, 戴姜平, 等. 半导体光电, 2016, 37(6), 805.
41 Miyajima S, Yamada A, Konagai M. Thin Solid Films, 2003, 430, 274.
42 Liu C H, Zhu S F, He Z H. New Chemical Materials, 2022, 50(8), 86(in Chinese).
刘灿辉, 朱世飞, 贺振华. 化工新型材料, 2022, 50(8), 86.
43 Botsoa J, Lysenko V, Géloën A, et al. Applied Physics Letters, 2008, 92(17), 173902.
44 Wang Y Z, Tuofu Z M, Yue Z M, et al. Chinese Journal of Physics, 2020, 64, 79.
45 Tang S F, Deng J Y, Wang S J, et al. Materials Science and Engineering A, 2007, 465, 1.
46 Lin S C, Zhang J, Zhu R H, et al. Material Research Bulletin, 2018, 105, 231.
47 Wang F Y, Cheng L F, Xiang L Y, et al. Journal of the European Ceramic Society, 2014, 34(7), 1667.
48 Semenov A V, Lubov D V, Kozlovskyi A A. Journal of Sensors, 2020, 2020, 1.
49 Wu J, Zhao X F, Ai C P, et al. International Journal of Modern Physics B, 2019, 33(15), 1950152.
50 Jakovlev O, Fuchs T, Rohlfing F, et al. Materials Science Forum, 2013, 740-742, 657.
51 Finkbeiner S. In: 39th European Solid-State Circuits Conference (ESSCIRC). Romania, 2013, pp. 9.
52 Champavat V R, Patel J K, Patel A P, et al. International Journal of Pharmaceutical Research Technology, 2014, 4, 32.
53 Young D J, Du J G, Zorman C A, et al. IEEE Sensors Journal, 2004, 4, 464.
54 Du J G, Ko W H, Mehregany M, et al. IEEE Sensors, 2005, 4, 1267.
55 Eickhoff M, Möller H, Kroetz G, et al. Sensors and Actuators A: Phy-sical, 1999, 74, 56.
56 Middelburg L M, Zeijl H W V, Vollebregt S, et al. IEEE Sensors Journal, 2020, 20(19), 11265.
57 Yang N J, Zhuang H, Hoffmann R, et al. Anavtical Chemistry, 2011, 83(15), 5827.
58 Hanifah S A, Heng L Y, Ahmad M. Analytical Sciences, 2009, 25(6), 779.
59 Zhang S, Du H J, Ong S E, et al. Thin Solid Films, 2006, 515(1), 66.
60 Kwok S C H, Jin W, Chu P K. Diamond & Related Materials, 2005, 14(1), 78.
61 Jiang X, Zhuang H. Novel Aspects of Diamond, 2015, 121, 31.
62 Zhuang H, Yang N J, Zhang L, et al. American Chemical Society, 2015, 7, 10886.
63 Liu J, Zhang Y S, Fan Z Q, et al. Nanotechnology, 2020, 31, 275705.
64 Kundu K, Ghosh A, Ray A, et al. Journal of Materials Science: Mate-rials in Electronics, 2020, 31(20), 17943.
[1] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[2] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[3] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[4] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[5] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[6] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[7] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[8] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[9] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[10] 孙青月, 余涛, 彭双凤, 孔德昭, 刘畅, 史巧巧, 李雅琪, 陈勇. 荧光生物传感器用于多种真菌毒素同时检测的研究进展[J]. 材料导报, 2024, 38(10): 22090139-11.
[11] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[12] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[13] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[14] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[15] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed