Abstract: Silicon carbide(SiC) material has excellent physical, chemical and electrical properties, which can meet the application under extreme conditions such as high temperature and high corrosion. SiC is also the main candidate material for MEMS under extreme working conditions, and has become a hot research topic in the field of new materials, microelectronics and optoelectronics in the world. At the same time, silicon carbide has homogeneous isomers that belong to the same cubic crystal system as silicon, and can be combined with silicon technology to produce silicon based devices that meet the needs of large-scale integrated circuits. Therefore, the work of preparing silicon carbide films using silicon wafers as substrates has received special attention from researchers. This paper summarizes the research status of Si-based SiC films at home and abroad in recent years, and systematically introduces their preparation methods, mainly including various chemical vapor deposition(CVD) methods and physical vapor deposition(PVD) methods, and summarizes the properties of Si-based SiC films, including Young’s modulus, hardness, film reflectivity, film transmittance, luminescence performance, resistance, piezoresistance, resistivity and conductivity, as well as their applications in fields such as MEMS sensors, biosensors and solar cells. Finally, looking forward to the future development of Si-based SiC films.
杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
YANG Chenguang, WANG Xiufeng. Research Progress in Preparation and Application of Si-based Silicon Carbide Films. Materials Reports, 2024, 38(7): 23010118-14.
1 Esteves G, Habermehl S D, Clews P J, et al. Journal of Microelectromechanical Systems, 2019, 28(5), 859. 2 Dinh T, Nguyen T K, Phan H P, et al. Advanced Engineering Materials, 2019, 21(3), 1801049. 3 Kociubiński A, Bieniek T, Janczyk G. In: 8th International Conference New Electrical and Electronic Technologies and Their Industrial Implementation(NEET). Zakopane, 2014, pp. 1374. 4 Wang J Y, Deng C G, Ma Y, et al. The Journal of Light Scattering, 2017, 29(4), 376(in Chinese). 王靖宇, 邓春纲, 马瑶, 等. 光散射学报, 2017, 29(4), 376. 5 Ye C, Ran G, Zhou W, et al. Nanomaterials, 2017, 7, 408. 6 Mao K L, Wang Y M, Li B, et al. Electronics Process Technology, 2017, 38(3), 128 (in Chinese). 毛开礼, 王英民, 李斌, 等. 电子工艺技术, 2017, 38(3), 128. 7 Sun Q Y, Yang M J, Li J, et al. Journal of the American Ceramic Society, 2019, 102(8), 4480. 8 Cai L Y, Xu Q F, Lu W Z, et al. Ceramics International, 2020, 46(10), 16518. 9 Liu Z Z, Xu Q F, Sun Q Y, et al. Thin Solid Films, 2019, 678, 8. 10 Guo H, Yang X Y, Xu Q F, et al. Journal of Alloys and Compounds, 2020, 826, 154198. 11 Li Z X, Huang J L, Xie C P, et al. Atomic Energy Science and Technology, 2022, 56(7), 1473(in Chinese). 李子曦, 黄景林, 谢春平, 等. 原子能科学技术, 2022, 56(7), 1473. 12 Sha B, Lukianov A N, Dusheiko M G, et al. Optical Materials, 2020, 106, 109959. 13 Wen G Z. Journal of Wuhan Polytechnic University, 2019, 38(3), 46(in Chinese). 文国知. 武汉轻工大学学报, 2019, 38(3), 46. 14 Lukianov A N, Klyui N I, Sha B, et al. Journal of Alloys and Compounds, 2019, 801, 285. 15 Hsu Y L, Chang Y F, Chung W M, et al. Applied Physics Letters, 2020, 116, 213502. 16 Jha H S, Agarwal P. Journal of Materials Science: Materials in Electro-nics, 2015, 26(3), 1381. 17 Tehrani F S. Bulletin of Materials Science, 2015, 38(5), 1333. 18 Tehrani F S. Journal of Materials Science: Materials in Electronics, 2016, 27(11), 11457. 19 Zhang Z Y, Zhao W, Wang X W, et al. Materials Science and Enginee-ring, 2000, 75, 177. 20 Beisenov R, Ebrahim R, Mansurov Z A, et al. Eurasian Chemico-Technological Journal, 2013, 15, 25. 21 Zuo R, Zhang H, Liu X L. Journal of Crystal Growth, 2006, 293, 498. 22 Mousa H, Yildirim M A, Teker K. Semiconductor Science and Technology, 2019, 34, 095002. 23 Chen H F, Xue Y J. Surface Technology, 2016, 45(10), 56(in Chinese). 陈海峰, 薛莹洁. 表面技术, 2016, 45(10), 56. 24 Liu M, Yang Y, Mao Q, et al. Ceramics International, 2021, 47(17), 24098. 25 Tavsanoglu T, Zayim E O, Agirseven O, et al. Thin Solid Films, 2019, 674, 1. 26 Kefif K, Bouizem Y, Belfedal A, et al. Optik, 2018, 154, 459. 27 Liu J F, Liu Z L, Wang K F, et al. Chinese Journal of Vacuum Science and Technology, 2007, 27(1), 5(in Chinese). 刘金锋, 刘忠良, 王科范, 等. 真空科学与技术学报, 2007, 27(1), 5. 28 Juluri R R, Gaiduk P, Hansen J L, et al. Thin Solid Films, 2018, 662, 103. 29 Schiller S, Metzner C, Zywitzki O. Surface and Coatings Technology, 2000, 125, 240. 30 Hu B B, He X X, Xu S F, et al. Journal of Hefei University of Technology, 2015, 38(3), 351 (in Chinese). 胡冰冰, 何晓雄, 许世峰, 等. 合肥工业大学学报(自然科学版), 2015, 38(3), 351. 31 Kukushkin S A, Osipov A V. In: 25th International Conference on Vacuum Technique and Technology. Petersburg, 2018, pp. 012044. 32 Kukushkin S A, Osipov A V, Feoktistov N A. Physics of the Solid State, 2014, 56(8), 1507. 33 Kidalov V V, Kukushkin S A, Osipov A V, et al. ECS Journal of Solid State Science and Technology, 2018, 7(4), 158. 34 Nawaz A, Islam B, Mao W G, et al. International Journal of Applied Ceramic Technology, 2019, 16(2), 706. 35 Frischmuth T, Schneider M, Maurer D, et al. Thin Solid Films, 2016, 611, 6. 36 Singh N, Kaur D. In: International Conference on Condensed Matter and Applied Physics. Roorkee, 2016, pp. 020653. 37 Liu X, Zhao Q N, Zhang Z H, et al. Bulletin of the China Ceramic Society, 2018, 37(10), 3049(in Chinese). 刘翔, 赵青南, 张泽华, 等. 硅酸盐通报, 2018, 37(10), 3049. 38 Wang X H, Yoshida T. Acta Materiae Compositae Sinica, 2005, 22(1), 74 (in Chinese). 王新华, Yoshida T. 复合材料学报, 2005, 22(1), 74. 39 Jin Q L, Li G L, Wang H D, et al. Surface Technology, 2015, 44(12), 127(in Chinese). 靳巧玲, 李国禄, 王海斗, 等. 表面技术, 2015, 44(12), 127. 40 He G T, Liu B, Dai J P, et al. Semiconductor Optoelectronics, 2016, 37(6), 805 (in Chinese). 何国堂, 刘斌, 戴姜平, 等. 半导体光电, 2016, 37(6), 805. 41 Miyajima S, Yamada A, Konagai M. Thin Solid Films, 2003, 430, 274. 42 Liu C H, Zhu S F, He Z H. New Chemical Materials, 2022, 50(8), 86(in Chinese). 刘灿辉, 朱世飞, 贺振华. 化工新型材料, 2022, 50(8), 86. 43 Botsoa J, Lysenko V, Géloën A, et al. Applied Physics Letters, 2008, 92(17), 173902. 44 Wang Y Z, Tuofu Z M, Yue Z M, et al. Chinese Journal of Physics, 2020, 64, 79. 45 Tang S F, Deng J Y, Wang S J, et al. Materials Science and Engineering A, 2007, 465, 1. 46 Lin S C, Zhang J, Zhu R H, et al. Material Research Bulletin, 2018, 105, 231. 47 Wang F Y, Cheng L F, Xiang L Y, et al. Journal of the European Ceramic Society, 2014, 34(7), 1667. 48 Semenov A V, Lubov D V, Kozlovskyi A A. Journal of Sensors, 2020, 2020, 1. 49 Wu J, Zhao X F, Ai C P, et al. International Journal of Modern Physics B, 2019, 33(15), 1950152. 50 Jakovlev O, Fuchs T, Rohlfing F, et al. Materials Science Forum, 2013, 740-742, 657. 51 Finkbeiner S. In: 39th European Solid-State Circuits Conference (ESSCIRC). Romania, 2013, pp. 9. 52 Champavat V R, Patel J K, Patel A P, et al. International Journal of Pharmaceutical Research Technology, 2014, 4, 32. 53 Young D J, Du J G, Zorman C A, et al. IEEE Sensors Journal, 2004, 4, 464. 54 Du J G, Ko W H, Mehregany M, et al. IEEESensors, 2005, 4, 1267. 55 Eickhoff M, Möller H, Kroetz G, et al. Sensors and Actuators A: Phy-sical, 1999, 74, 56. 56 Middelburg L M, Zeijl H W V, Vollebregt S, et al. IEEE Sensors Journal, 2020, 20(19), 11265. 57 Yang N J, Zhuang H, Hoffmann R, et al. Anavtical Chemistry, 2011, 83(15), 5827. 58 Hanifah S A, Heng L Y, Ahmad M. Analytical Sciences, 2009, 25(6), 779. 59 Zhang S, Du H J, Ong S E, et al. Thin Solid Films, 2006, 515(1), 66. 60 Kwok S C H, Jin W, Chu P K. Diamond & Related Materials, 2005, 14(1), 78. 61 Jiang X, Zhuang H. Novel Aspects of Diamond, 2015, 121, 31. 62 Zhuang H, Yang N J, Zhang L, et al. American Chemical Society, 2015, 7, 10886. 63 Liu J, Zhang Y S, Fan Z Q, et al. Nanotechnology, 2020, 31, 275705. 64 Kundu K, Ghosh A, Ray A, et al. Journal of Materials Science: Mate-rials in Electronics, 2020, 31(20), 17943.