Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22110222-5    https://doi.org/10.11896/cldb.22110222
  金属与金属基复合材料 |
铜箔衬底对化学气相沉积法制备石墨烯的影响
王云鹏1,2, 刘宇宁1,2, 王同波1,2, 张嘉凝1,2, 莫永达1,2, 娄花芬3,*
1 中国铜业工程技术研究院,北京 102209
2 昆明冶金研究院有限公司北京分公司,北京 102209
3 中铝科学技术研究院有限公司,北京 102209
Effects of Copper Foil Substrate on Graphene Growth by Chemical Vapor Deposition
WANG Yunpeng1,2, LIU Yuning1,2, WANG Tongbo1,2, ZHANG Jianing1,2, MO Yongda1,2, LOU Huafen3,*
1 China Copper Institute of Engineering and Technology, Beijing 102209, China
2 Kunming Metallurgical Research Institute Co., Ltd., Beijing Branch, Beijing 102209, China
3 Chinalco Research Institute of Science and Technology Co., Ltd., Beijing 102209, China
下载:  全 文 ( PDF ) ( 20530KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学气相沉积法(CVD)制备石墨烯用的铜箔往往要求其表面平整、具有较大晶粒、大面积的Cu(111)晶面取向。本研究采用不同厚度的商用压延铜箔与电解铜箔为衬底,对比分析了铜箔表面形貌、晶粒尺度与Cu(111)面的差异,并探讨了在相同条件下两类铜箔对生长石墨烯的影响。研究表明,电解铜箔的表面粗糙度在预处理与退火后均大于压延铜箔。压延铜箔由于经历变形,退火处理后晶粒尺寸为37 μm,Cu(111)面比例约40%,电解铜箔退火后晶粒尺寸约为24 μm,Cu(111)面比例约为28%,压延铜箔优于电解铜箔。CVD制备石墨烯后发现压延铜箔上生长的石墨烯岛的面积大于电解铜箔,石墨烯缺陷要少于电解铜箔,即相同制备条件与相同厚度下压延铜箔上制备的石墨烯质量优于电解铜箔上制备的石墨烯。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王云鹏
刘宇宁
王同波
张嘉凝
莫永达
娄花芬
关键词:  电解铜箔  压延铜箔  化学气相沉积法  石墨烯    
Abstract: Copper foil for graphene growth by chemical vapor deposition (CVD) usually requires smooth surface, large grain size and large area of Cu (111) crystal face. In this study, commercial rolled copper foil and electrolytic copper foil with different thickness were used to prepare graphene. The differences of copper foil surface morphology, grain size and the proportion of Cu (111) crystal face were compared, and the differences of graphene grown on the two kinds of copper foil under the same preparation conditions were discussed. It was found that the surface roughness of electrolytic copper foil was larger than that of rolled copper foil after surface pretreatment and annealing treatment. Due to the large deformation experienced by the rolled copper foil, the grain size of annealed copper foil was about 37 μm and the proportion of Cu (111) crystal face was about 40%, while that of electrolytic copper foil was about 24 μm and the proportion of Cu (111) crystal face was about 28%. The area of graphene was land on rolled copper foil was larger than that of electrolytic copper foil, and the defects of graphene was less than that of electrolytic copper foil. The graphene prepared on rolled copper foil was better than that on electrolytic copper foil under the same conditions.
Key words:  electrolytic copper foil    rolled copper foil    chemical vapor deposition (CVD)    graphene
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TG146.1+1  
基金资助: 北京市科技计划课题(Z211100004521005);中铝集团战略前沿技术重大专项(2022ZL015013)
通讯作者:  *娄花芬,教授级高级工程师,国务院政府特殊津贴专家。2009年6月毕业于中南大学材料物理专业,获工学博士学位。长期从事铜、镁等有色金属材料的研制和新技术研发工作,在高纯无氧铜、高强高导铜合金、高强耐磨复杂铜合金、耐蚀铜合金、环境友好铜材及定向凝固、铸轧等短流程近终成型技术等方面进行深入研究。主持完成多项国家及省、市重大科研项目和军工科研项目。发表学术论文30余篇,编写专业著作4部,获国家发明专利30余件。历获国家科技进步奖二等奖1项,省部级科技进步一等奖7项,二等奖8项。louhuafen@cmari.com   
作者简介:  王云鹏,中铝集团中国铜业工程技术研究院工程师。2019年1月毕业于燕山大学材料科学与工程学院材料学专业,获得工学博士学位。同年加入中铝集团工作至今,主要从事先进铜合金、铜基复合材料研发、铜合金应用性能、铅锌锗等有色金属材料提纯及应用等领域的研究。在国内外重要期刊发表学术论文20余篇,2022年获得有色金属工业协会科学技术一等奖1项。
引用本文:    
王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
WANG Yunpeng, LIU Yuning, WANG Tongbo, ZHANG Jianing, MO Yongda, LOU Huafen. Effects of Copper Foil Substrate on Graphene Growth by Chemical Vapor Deposition. Materials Reports, 2024, 38(13): 22110222-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110222  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22110222
1 Zhang W Y, Quan S J, Sensor World, 2011, 17(5), 6 (in Chinese).
张文毓, 全识俊. 传感器世界, 2011, 17(5), 6.
2 Zhou H L, Yu W J, Liu L X, et al. Nature Communications, 2013, 4, 2096.
3 Xiao X Y, Li Y C, Liu Z P. Nature Materials, 2016, 15(7), 697.
4 Zhang W, Man W D, Tu X, et al. Vacuum & Cryogenics, 2013, 3(4), 195 (in Chinese).
张玮, 满卫东, 涂昕, 等. 真空与低温, 2013, 3(4), 195.
5 Cai J W, Feng K Q, Wang H B, et al. Materials Reports, 2024, 38(1), 154(in Chinese).
蔡锦文, 冯可芹, 王海波, 等. 材料导报, 2024, 38(1),154.
6 Li H, Fu Z B, Wang H B, et al. Acta Physica Sinica, 2017, 66(5), 058101 (in Chinese).
李浩, 付志兵, 王红斌, 等, 物理学报, 2017, 66(5), 058101.
7 Sun Y F, Wang X J, Song J C, et al. Printed Circuit Information, 2016, 24(9), 36 (in Chinese).
孙云飞, 王学江, 宋佶昌, 等. 印制电路信息, 2016, 24(9), 36.
8 Zhang Z H, Xu X Z, Qiu L, et al. Advanced Science, 2017, 4(9), 1700087.
9 Feng W, Zhang J H, Yang L Q. Journal of Functional Materials, 2015, 46(1), 01129 (in Chinese).
冯伟, 张建华, 杨连乔. 功能材料, 2015, 46(1), 01129.
10 Chen M, Yan Y, Zhang X F, et al. Journal of Aeronautical Materials, 2015, 35(2), 1 (in Chinese).
陈牧, 颜悦, 张晓锋, 等. 航空材料学报, 2015, 35(2), 1.
11 Yi M. Functional Materials Information. 2015, 12(3), 60 (in Chinese).
佚名. 功能材料信息, 2015, 12(3), 60.
12 Cao M, Xiong D B, Yang L, et al. Advanced Functional Materials, 2019, 29(17), 1806792.
13 Xu X Z, Zhang Z H, Dong J C, et al. Science Bulletin, 2017, 62(15), 1074.
14 Liu J G. Printed Circuit Information, 2015, 23(2), 13 (in Chinese).
刘建广. 印制电路信息, 2015, 23(2), 13.
15 Fang J, Zhang H, Xia T D, et al. Metallic Functional Materials, 2018, 25(3), 6 (in Chinese).
方军, 张涵, 夏天东, 等. 金属功能材料, 2018, 25(3), 6.
16 Liu X Q, Yin J C, Lin Z D. Journal of Materials Science & Engineering, 2019, 37(5), 763 (in Chinese).
刘湘祁, 尹建成, 林正得. 材料科学与工程学报, 2019, 37(5), 763.
17 Sun F T, Feng A H, Yu Y, et al. Journal of Inorganic Materials, 2020, 35(10), 1177.
18 赵泰真, 李先珩, 朴瑟气, 等. 中国专利, CN109072466A, 2018.
19 Polsen E S, McNerny D Q, Viswanath B, et al. Scientific Reports, 2015, 5(1), 10257.
20 Song R L, Liu P, Zhang K, et al. Journal of Materials Science & Engineering, 2016, 34(1), 96 (in Chinese).
宋瑞利, 刘平, 张柯, 等. 材料科学与工程学报, 2016, 34(1), 96.
21 Wood J D, Schmucker S W, Lyons A S, et al. Nano Letters, 2011, 11(11), 4547.
22 Liang Y M, Zhou J X, Zhang Y Q. Materials for Mechanical Engineering, 2015, 39(7), 25 (in Chinese).
梁勇明, 周建新, 张芸秋. 机械工程材料, 2015, 39(7), 25.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[3] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[4] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[5] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[6] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[7] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[8] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[9] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[10] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[11] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
[12] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[13] 杨蕾, 朱茂兰, 翁威, 衷水平. 锂电池用电解铜箔性能调控研究进展[J]. 材料导报, 2024, 38(10): 22110058-9.
[14] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[15] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed