Research Progress on Performance Regulation of Electrolytic Copper Foil for Lithium Batteries
YANG Lei1, ZHU Maolan2, WENG Wei3, ZHONG Shuiping3,4,5,*
1 School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 2 School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China 3 Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China 4 Fujian Provincial Key Laboratory of Green Extraction and High Value Utilization of New Energy Metals, Fuzhou 350108, China 5 State Key Laboratory of Comprehensive Utilization of Low-grade Refractory Gold Ores (Zijin Mining Group Co., Ltd.,), Longyan 364200, Fujian, China
Abstract: The gradual development of new energy power lithium batteries towards high energy density has driven the trends development of high performance, such as ultra-thin, low profile and high mechanical properties of anode copper foil collectors. As one of the key auxiliary materials for lithium batteries, the quality and properties of electrolytic copper foil for lithium batteries play a key role in battery performance. Therefore, the precise regulation of performance and directional modification of structure of the copper foil are of great significance to improving the performance of lithium batteries. This paper introduces the principle and process of copper electrodeposition and the current copper foil market from the perspective of lithium battery copper foil electrodeposition technology, summaries the mechanism of the influence of physical, chemical and surface properties of lithium copper foil on the electrochemical performance of lithium batteries, and provides a reference for the subsequent precise regulation of copper foil performance. It also further illustrates two comprehensive methods to improve the performance of lithium copper foil and lithium battery performance, namely raw foil process parameter optimization and modification treatment, and analyses the current status and development of copper foil structural modification. Finally, this paper illustrates the problems of electrolytic copper foil as lithium battery anode collectors, and looks forward to its future development trends, which guides the development and application of high-performance copper foil for lithium batteries.
1 Ke C Z, Shao R W, Zhang Y G, et al. Advanced Functional Materials, 2022, 32(38), 2205635. 2 Wang Z S, Xing B L, Zeng H H, et al. Applied Surface Science, 2021, 547, 149228. 3 Zuo T T, Wu X W, Yang C P, et al. Advanced Materials, 2017, 29(29), 1700389. 4 Li Q Y, Ge W, Yang P X, et al. Journal of the Electrochemical Society, 2016, 163(5), D127. 5 Brown D A, Morgan S, Peldzinski V, et al. Journal of Crystal Growth, 2017, 478, 220. 6 Hanf L, Diehl M, Kemper L S, et al. Electrophoresis, 2020, 41(18), 1568. 7 Chu H C, Tuan H Y. Journal of Power Sources, 2017, 346, 40. 8 Baral A, Sarangi C K, Tripathy B C, et al. Hydrometallurgy, 2014, 146, 8. 9 Chan P F, Ren R S, Wen S H, et al. Journal of the Electrochemical Society, 2017, 164(9), D660. 10 Lu L L, Ge J, Yang J N, et al. Nano Letters, 2016, 16(7), 4431. 11 Zhu J Y, Feng J M, Guo Z S. RSC Advances, 2014, 4(101), 57671. 12 Keller R M, Baker S P, Arzt E. Journal of Materials Research, 1998, 13(5), 1307. 13 Jin R T. Electrolytic copper foil production, Central South University Press, China, 2010, pp.116 (in Chinese). 金荣涛. 电解铜箔生产, 中南大学出版社, 2010, pp.116. 14 Zhang B C. Electroplating technology, Beijing University of Aeronautics and Astronautics Press, China, 1993, pp.69 (in Chinese). 章葆澄. 电镀工艺学, 北京航空航天大学出版社, 1993, pp.69. 15 Jiang P, Yu Y D. Chinese Journal of Nonferrous Metals, 2012, 22(12), 3504 (in Chinese). 江鹏, 于彦东. 中国有色金属学报, 2012, 22(12), 3504. 16 Li D. Principle of electrochemistry, Beijing University of Aeronautics and Astronautics Press, China, 1989, pp.219 (in Chinese). 李荻. 电化学原理, 北京航空航天大学出版社, 1989, pp.219. 17 Kondo K Z, Okamoto N K, Saito T, et al. ECS Transactions, 2010, 28(29), 89. 18 Li Q, Gu M, Xian X H. Progress in Chemical, 2008(4), 483(in Chinese). 李强, 辜敏, 鲜晓红. 化学进展, 2008(4), 483. 19 Hu L X, Zhan W, Ouyang G, et al. Electroplating and Finishing, 2008(9), 9(in Chinese). 胡立新, 占稳, 欧阳贵, 等. 电镀与涂饰, 2008(9), 9. 20 Scharifker B, Hills G. Electrochimica Acta, 1983, 28(7), 879. 21 Lin C C, Yen C H, Lin S C, et al. Journal of the Electrochemical Society, 2017, 164(13), D810. 22 Yu W Y. Study on preparation process and properties of electrolytic copper foil for lithium ion batteries. Master’s Thesis, Harbin Institute of Technology,China, 2019 (in Chinese). 余威懿. 锂离子电池用电解铜箔的制备工艺与性能研究. 硕士学位论文, 哈尔滨工业大学, 2019. 23 Xia T T, Liang T X, Xiao Z E, et al. Journal of Alloys and Compounds, 2020, 831, 154801. 24 Li S J, Zhu Q S, Zheng B D, et al. Materials Science and Engineering A, 2019, 758, 1. 25 Zhu P C, Gastol D, Marshall J, et al. Journal of Power Sources, 2021, 485, 229321. 26 Yang L, Weng W, Zhu H L, et al. Materials Today Communications, 2023, 35, 105952. 27 Kataoka R, Oda Y, Inoue R, et al. Journal of Power Sources, 2016, 301, 355. 28 Yang S D, Thacker Z, Allison E, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40921. 29 Song X, Lu Y J, Shi M L, et al. Journal of Physics, 2018, 67(14), 30 (in Chinese). 宋旭, 陆勇俊, 石明亮, 等. 物理学报, 2018, 67(14), 30. 30 Zhang J L, Chen H B, Fan B, et al. Journal of Alloys and Compounds, 2021, 884, 161044. 31 Shu J, Shui M, Huang F T, et al. Electrochimica Acta, 2011, 56(8), 3006. 32 Wotango A S, Su W, Leggesse E G, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2410. 33 Su H, Fang Z, Tsang P E, et al. Journal of Hazardous Materials, 2016, 318, 533. 34 Wang W J, Liu J, Liu X F, et al. Progress in Organic Coatings, 2022, 163, 106663. 35 Wojciechowski J, Kolanowski Ł, Bund A, et al. Journal of Power Sources, 2017, 368, 18. 36 Wang S P, Wei K X, Wei W, et al. Physica Status Solidi (a), 2022, 219(5), 2100735. 37 Tang Z Y, He Y B, Liu Y G, et al. Corrosion Science and Protection Techniques, 2007(4), 265 (in Chinese). 唐致远, 贺艳兵, 刘元刚, 等. 腐蚀科学与防护技术, 2007(4), 265. 38 Chen J Q, Wang X G, Gao H T, et al. Surface and Coatings Technology, 2021, 410, 126881. 39 Lin R X, Zhang S C, Du Z J, et al. RSC Advances, 2015, 5(106), 87090. 40 Xu S L, Zhang S H, Jin R T, et al. Non-ferrous Metal Processing, 2006 (3), 1 (in Chinese). 许石亮, 张胜华, 金荣涛, 等. 有色金属加工, 2006(3), 1. 41 Zhou J, Guo B, Shan D B. Materials Science and Technology, 2010, 18(4), 445(in Chinese). 周健, 郭斌, 单德彬. 材料科学与工艺, 2010, 18(4), 445. 42 Li J, Kohl P A. Journal of the Electrochemical Society, 2003, 150(8), C558. 43 Li Y F, Huang G J, Yin X Q, et al. IOP Conference Series: Materials Science and Engineering, 2018, 381, 012166. 44 Cai F M. The influence of electrodeposition parameters on microstructure and mechanical properties of electrolytic copper foils. Master’s Thesis, Nanchang University,China, 2011(in Chinese). 蔡芬敏. 电沉积参数对电解铜箔组织性能的影响. 硕士学位论文, 南昌大学, 2011. 45 Woo T G, Lee M H, Park E K, et al. Korean Journal of Metals and Materials, 2013, 47(4), 256. 46 Cheng X, Li Y F, Huang G J, et al. Materials Science Forum, 2019, 944, 205. 47 Ibañez A, Fatás E. Surface and Coatings Technology, 2005, 191(1), 7. 48 Kurihara H, Kondo K, Okamoto Y. Journal of Chemical Engneering of Japan, 2010, 43(7), 612. 49 Shu Y D, Zhang Z, Tang R R, et al. Electroplating and Environmental Protection, 1999(6), 5 (in Chinese). 舒余德, 张昭, 唐瑞仁, 等. 电镀与环保, 1999(6), 5. 50 Sun Y, Pan J F, Liu L L, et al. Journal of Applied Electrochemistry, 2022, 52(8), 1219. 51 Walker M L, Richter L J, Moffat T P. Journal of the Electrochemical Society, 2007, 154(5), D277. 52 Liu L L, Bu Y Q, Sun Y, et al. Journal of Materials Science & Technology, 2021, 74, 237. 53 Yu W Y, Lin C Y, Li Q Y, et al. Journal of Applied Electrochemistry, 2021, 51(3), 489. 54 Fan X W. Study on microstructure and mechanical properties of ultrathin electrolytic copper foil and surface treatment technology. Ph. D. Thesis, Jiangxi University of Science and Technology, China, 2021 (in Chinese). 樊小伟. 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究. 博士学位论文, 江西理工大学, 2021. 55 Zhou B X, Bonakdarpour A, Stoševski I, et al. Progress in Materials Science, 2022, 130, 100996. 56 Zhao H, Lei D N, He Y B, et al. Advanced Energy Materials, 2018, 8(19), 1800266. 57 Xiao Z E, Chen J, Liu J, et al. Journal of Power Sources, 2019, 438, 226973. 58 Yang C P, Yin Y X, Zhang S F, et al. Nature Communications, 2015, 6(1), 8058. 59 Ryu J, Song W J, Lee S, et al. Advanced Functional Materials, 2020, 30(2), 1902499. 60 Fei X Y, Dong Z C, Gong B, et al. ACS Applied Materials & Interfaces, 2021, 13(35), 42266. 61 Tang Y P, Shen K, Lv Z Y, et al. Journal of Power Sources, 2018, 403, 82. 62 Zhang J L, Chen H B, Wen M, et al. Advanced Functional Materials, 2022, 32, 2110110. 63 Yuan Q B, Hen Y B, Lv W, et al. Advanced Materials, 2016, 28(32), 6932. 64 Jiang W F, Wang S, Wang Y, et al. Energy Tenchnology, 2023, 11(6), 2300053. 65 Cui X X, Yang J, Xu Z X, et al. Nano Energy, 2022, 95, 107013. 66 Jiang Y, Zhang W Q, Qi Y Y, et al. Nanomaterials, 2023, 13, 1400. 67 Lin K, Li T, Chang S W, et al. Small, 2020, 16, 2001784. 68 Wang N, Hang T, Ling H Q, et al. Journal of Materials Chemistry A, 2015, 3, 11912. 69 Long J, Liu H L, Xie Y X, et al. Materials, 2018, 11, 1338. 70 Moon S H, Kim S J, Kim M C, et al. Materials Chemistry and Physics, 2019, 223, 152. 71 Bao Q, Lee J, Duh J G, et al. Materials Letters, 2017, 202, 28. 72 Zhao Y C, Liu C G, Sun Y, et al. Journal of Alloys and Compounds, 2019, 803, 505. 73 Zhang X Y, Wang A X, Lv R J, et al. Energy Storage Materials, 2019, 18, 199. 74 Liu X F, Wang D, Zhang B S, et al. Electrochimica Acta, 2018, 268, 234. 75 Xiao Z E, Rao X F, Chen J, et al. Materials Chemistry Frontiers, 2022, 6(17), 2478. 76 Chen K T, Yang Y C, Yi Y H, et al. Journal of Colloid and Interface Science, 2021, 598, 155. 77 Wen Z X, Fang W Q, Chen L, et al. Advanced Functional Materials, 2021, 31(42), 2104930. 78 Elshkaki A, Graedel T E, Ciacci L, et al. Global Environmental Change, 2016, 39, 305. 79 Ghosh S. Thin Solid Films, 2019, 669, 641. 80 Ye Y S, Chou L Y, Liu Y Y, et al. Nature Energy, 2020, 5, 786. 81 Zhang Y S, Liu Y, Tang Y Z, et al. Journal of Electroanalytical Chemistry, 2022, 918, 116495. 82 Wang W Z, Li F J, Xu Y, et al. Journal of Materials Research and Technology, 2022, 19, 1724.