Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22110058-9    https://doi.org/10.11896/cldb.22110058
  金属与金属基复合材料 |
锂电池用电解铜箔性能调控研究进展
杨蕾1, 朱茂兰2, 翁威3, 衷水平3,4,5,*
1 福州大学材料科学与工程学院,福州 350108
2 厦门理工学院材料科学与工程学院,福建 厦门 361024
3 福州大学紫金地质与矿业学院,福州 350108
4 福建省新能源金属绿色提取与高值利用重点实验室,福州 350108
5 紫金矿业集团股份有限公司低品位难处理黄金资源综合利用国家重点实验室,福建 龙岩 364200
Research Progress on Performance Regulation of Electrolytic Copper Foil for Lithium Batteries
YANG Lei1, ZHU Maolan2, WENG Wei3, ZHONG Shuiping3,4,5,*
1 School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
2 School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China
3 Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
4 Fujian Provincial Key Laboratory of Green Extraction and High Value Utilization of New Energy Metals, Fuzhou 350108, China
5 State Key Laboratory of Comprehensive Utilization of Low-grade Refractory Gold Ores (Zijin Mining Group Co., Ltd.,), Longyan 364200, Fujian, China
下载:  全 文 ( PDF ) ( 18005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新能源动力锂电池行业向高能量密度的逐步迈进推动了负极铜箔集流体朝超薄、低轮廓、高力学性能等高性能的趋势发展。锂电铜箔作为锂电池的关键辅材之一,其质量和特性对锂电池性能起着重要作用。因此,锂电铜箔的性能精准调控和结构定向修饰对提升锂电池性能具有重要意义。本文从锂电铜箔电沉积技术出发,介绍了铜电沉积原理、过程以及当前铜箔市场情况,归纳总结了锂电铜箔的物理性能、化学性能和表面性能对锂电池电化学性能的影响机制,为后续对铜箔性能精准调控提供参考,并重点综述了生箔工艺参数优化和改性处理这两种综合提升锂电铜箔性能和锂电池性能的方法,分析了铜箔结构修饰的研究现状和发展动态。最后,本文指出了目前电解铜箔作为锂电池负极集流体所存在的问题,并对其未来发展趋势进行了展望,以期为高性能锂电铜箔的研发和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨蕾
朱茂兰
翁威
衷水平
关键词:  电解铜箔  锂电池  铜集流体  特性  锂电性能    
Abstract: The gradual development of new energy power lithium batteries towards high energy density has driven the trends development of high performance, such as ultra-thin, low profile and high mechanical properties of anode copper foil collectors. As one of the key auxiliary materials for lithium batteries, the quality and properties of electrolytic copper foil for lithium batteries play a key role in battery performance. Therefore, the precise regulation of performance and directional modification of structure of the copper foil are of great significance to improving the performance of lithium batteries. This paper introduces the principle and process of copper electrodeposition and the current copper foil market from the perspective of lithium battery copper foil electrodeposition technology, summaries the mechanism of the influence of physical, chemical and surface properties of lithium copper foil on the electrochemical performance of lithium batteries, and provides a reference for the subsequent precise regulation of copper foil performance. It also further illustrates two comprehensive methods to improve the performance of lithium copper foil and lithium battery performance, namely raw foil process parameter optimization and modification treatment, and analyses the current status and development of copper foil structural modification. Finally, this paper illustrates the problems of electrolytic copper foil as lithium battery anode collectors, and looks forward to its future development trends, which guides the development and application of high-performance copper foil for lithium batteries.
Key words:  electrolytic copper foil    lithium battery    copper collector    characteristic    lithium performance
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TG178  
基金资助: 国家重点基础研究发展计划(973)(2022YFC3900804);国家自然科学基金(51874101)
通讯作者:  *衷水平,福州大学紫金地质与矿业学院教授、博士研究生导师。国家“万人计划”科技创新领军人才、国家“百千万人才工程”人选,授予“有突出贡献中青年专家”,国务院特殊津贴专家。“求是杰出青年成果转化奖”提名奖获得者、福建省特级后备人才、福建省优秀科技工作者、福建省最美科技工作者、十二五全国黄金行业科技标兵。2000年南方冶金学院有色金属冶金专业本科毕业,2005年贵州大学有色金属冶金专业硕士毕业,2009年中南大学有色金属冶金专业博士毕业后到紫金矿业集团股份有限公司工作至2021年11月,2021年12月至今任福州大学紫金地质与矿业学院院长。衷水平教授一直从事铜湿法冶金与清洁生产方面的基础研究及工程应用转化,主持国家重点研发课题及国家自然科学基金面上项目等多项国家级课题,在电沉积过程工艺条件控制、溶液杂质离子对电沉积的影响、阴极电沉积规律等方面积累了大量研究经验。在Hydrometallurgy等著名期刊发表论文100余篇,其中SCI/EI收录30余篇。申请国家发明专利60余件,授权发明专利40余件。出版学术专著(编著)2部。zspcsu@163.com   
作者简介:  杨蕾,2018年7月、2021年7月分别于江西理工大学和河南理工大学获得工学学士学位和硕士学位。现为福州大学材料科学与工程学院博士研究生,在衷水平教授的指导下进行研究。目前主要研究领域为资源利用科学与工程。
引用本文:    
杨蕾, 朱茂兰, 翁威, 衷水平. 锂电池用电解铜箔性能调控研究进展[J]. 材料导报, 2024, 38(10): 22110058-9.
YANG Lei, ZHU Maolan, WENG Wei, ZHONG Shuiping. Research Progress on Performance Regulation of Electrolytic Copper Foil for Lithium Batteries. Materials Reports, 2024, 38(10): 22110058-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110058  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22110058
1 Ke C Z, Shao R W, Zhang Y G, et al. Advanced Functional Materials, 2022, 32(38), 2205635.
2 Wang Z S, Xing B L, Zeng H H, et al. Applied Surface Science, 2021, 547, 149228.
3 Zuo T T, Wu X W, Yang C P, et al. Advanced Materials, 2017, 29(29), 1700389.
4 Li Q Y, Ge W, Yang P X, et al. Journal of the Electrochemical Society, 2016, 163(5), D127.
5 Brown D A, Morgan S, Peldzinski V, et al. Journal of Crystal Growth, 2017, 478, 220.
6 Hanf L, Diehl M, Kemper L S, et al. Electrophoresis, 2020, 41(18), 1568.
7 Chu H C, Tuan H Y. Journal of Power Sources, 2017, 346, 40.
8 Baral A, Sarangi C K, Tripathy B C, et al. Hydrometallurgy, 2014, 146, 8.
9 Chan P F, Ren R S, Wen S H, et al. Journal of the Electrochemical Society, 2017, 164(9), D660.
10 Lu L L, Ge J, Yang J N, et al. Nano Letters, 2016, 16(7), 4431.
11 Zhu J Y, Feng J M, Guo Z S. RSC Advances, 2014, 4(101), 57671.
12 Keller R M, Baker S P, Arzt E. Journal of Materials Research, 1998, 13(5), 1307.
13 Jin R T. Electrolytic copper foil production, Central South University Press, China, 2010, pp.116 (in Chinese).
金荣涛. 电解铜箔生产, 中南大学出版社, 2010, pp.116.
14 Zhang B C. Electroplating technology, Beijing University of Aeronautics and Astronautics Press, China, 1993, pp.69 (in Chinese).
章葆澄. 电镀工艺学, 北京航空航天大学出版社, 1993, pp.69.
15 Jiang P, Yu Y D. Chinese Journal of Nonferrous Metals, 2012, 22(12), 3504 (in Chinese).
江鹏, 于彦东. 中国有色金属学报, 2012, 22(12), 3504.
16 Li D. Principle of electrochemistry, Beijing University of Aeronautics and Astronautics Press, China, 1989, pp.219 (in Chinese).
李荻. 电化学原理, 北京航空航天大学出版社, 1989, pp.219.
17 Kondo K Z, Okamoto N K, Saito T, et al. ECS Transactions, 2010, 28(29), 89.
18 Li Q, Gu M, Xian X H. Progress in Chemical, 2008(4), 483(in Chinese).
李强, 辜敏, 鲜晓红. 化学进展, 2008(4), 483.
19 Hu L X, Zhan W, Ouyang G, et al. Electroplating and Finishing, 2008(9), 9(in Chinese).
胡立新, 占稳, 欧阳贵, 等. 电镀与涂饰, 2008(9), 9.
20 Scharifker B, Hills G. Electrochimica Acta, 1983, 28(7), 879.
21 Lin C C, Yen C H, Lin S C, et al. Journal of the Electrochemical Society, 2017, 164(13), D810.
22 Yu W Y. Study on preparation process and properties of electrolytic copper foil for lithium ion batteries. Master’s Thesis, Harbin Institute of Technology,China, 2019 (in Chinese).
余威懿. 锂离子电池用电解铜箔的制备工艺与性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
23 Xia T T, Liang T X, Xiao Z E, et al. Journal of Alloys and Compounds, 2020, 831, 154801.
24 Li S J, Zhu Q S, Zheng B D, et al. Materials Science and Engineering A, 2019, 758, 1.
25 Zhu P C, Gastol D, Marshall J, et al. Journal of Power Sources, 2021, 485, 229321.
26 Yang L, Weng W, Zhu H L, et al. Materials Today Communications, 2023, 35, 105952.
27 Kataoka R, Oda Y, Inoue R, et al. Journal of Power Sources, 2016, 301, 355.
28 Yang S D, Thacker Z, Allison E, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40921.
29 Song X, Lu Y J, Shi M L, et al. Journal of Physics, 2018, 67(14), 30 (in Chinese).
宋旭, 陆勇俊, 石明亮, 等. 物理学报, 2018, 67(14), 30.
30 Zhang J L, Chen H B, Fan B, et al. Journal of Alloys and Compounds, 2021, 884, 161044.
31 Shu J, Shui M, Huang F T, et al. Electrochimica Acta, 2011, 56(8), 3006.
32 Wotango A S, Su W, Leggesse E G, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2410.
33 Su H, Fang Z, Tsang P E, et al. Journal of Hazardous Materials, 2016, 318, 533.
34 Wang W J, Liu J, Liu X F, et al. Progress in Organic Coatings, 2022, 163, 106663.
35 Wojciechowski J, Kolanowski Ł, Bund A, et al. Journal of Power Sources, 2017, 368, 18.
36 Wang S P, Wei K X, Wei W, et al. Physica Status Solidi (a), 2022, 219(5), 2100735.
37 Tang Z Y, He Y B, Liu Y G, et al. Corrosion Science and Protection Techniques, 2007(4), 265 (in Chinese).
唐致远, 贺艳兵, 刘元刚, 等. 腐蚀科学与防护技术, 2007(4), 265.
38 Chen J Q, Wang X G, Gao H T, et al. Surface and Coatings Technology, 2021, 410, 126881.
39 Lin R X, Zhang S C, Du Z J, et al. RSC Advances, 2015, 5(106), 87090.
40 Xu S L, Zhang S H, Jin R T, et al. Non-ferrous Metal Processing, 2006 (3), 1 (in Chinese).
许石亮, 张胜华, 金荣涛, 等. 有色金属加工, 2006(3), 1.
41 Zhou J, Guo B, Shan D B. Materials Science and Technology, 2010, 18(4), 445(in Chinese).
周健, 郭斌, 单德彬. 材料科学与工艺, 2010, 18(4), 445.
42 Li J, Kohl P A. Journal of the Electrochemical Society, 2003, 150(8), C558.
43 Li Y F, Huang G J, Yin X Q, et al. IOP Conference Series: Materials Science and Engineering, 2018, 381, 012166.
44 Cai F M. The influence of electrodeposition parameters on microstructure and mechanical properties of electrolytic copper foils. Master’s Thesis, Nanchang University,China, 2011(in Chinese).
蔡芬敏. 电沉积参数对电解铜箔组织性能的影响. 硕士学位论文, 南昌大学, 2011.
45 Woo T G, Lee M H, Park E K, et al. Korean Journal of Metals and Materials, 2013, 47(4), 256.
46 Cheng X, Li Y F, Huang G J, et al. Materials Science Forum, 2019, 944, 205.
47 Ibañez A, Fatás E. Surface and Coatings Technology, 2005, 191(1), 7.
48 Kurihara H, Kondo K, Okamoto Y. Journal of Chemical Engneering of Japan, 2010, 43(7), 612.
49 Shu Y D, Zhang Z, Tang R R, et al. Electroplating and Environmental Protection, 1999(6), 5 (in Chinese).
舒余德, 张昭, 唐瑞仁, 等. 电镀与环保, 1999(6), 5.
50 Sun Y, Pan J F, Liu L L, et al. Journal of Applied Electrochemistry, 2022, 52(8), 1219.
51 Walker M L, Richter L J, Moffat T P. Journal of the Electrochemical Society, 2007, 154(5), D277.
52 Liu L L, Bu Y Q, Sun Y, et al. Journal of Materials Science & Technology, 2021, 74, 237.
53 Yu W Y, Lin C Y, Li Q Y, et al. Journal of Applied Electrochemistry, 2021, 51(3), 489.
54 Fan X W. Study on microstructure and mechanical properties of ultrathin electrolytic copper foil and surface treatment technology. Ph. D. Thesis, Jiangxi University of Science and Technology, China, 2021 (in Chinese).
樊小伟. 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究. 博士学位论文, 江西理工大学, 2021.
55 Zhou B X, Bonakdarpour A, Stoševski I, et al. Progress in Materials Science, 2022, 130, 100996.
56 Zhao H, Lei D N, He Y B, et al. Advanced Energy Materials, 2018, 8(19), 1800266.
57 Xiao Z E, Chen J, Liu J, et al. Journal of Power Sources, 2019, 438, 226973.
58 Yang C P, Yin Y X, Zhang S F, et al. Nature Communications, 2015, 6(1), 8058.
59 Ryu J, Song W J, Lee S, et al. Advanced Functional Materials, 2020, 30(2), 1902499.
60 Fei X Y, Dong Z C, Gong B, et al. ACS Applied Materials & Interfaces, 2021, 13(35), 42266.
61 Tang Y P, Shen K, Lv Z Y, et al. Journal of Power Sources, 2018, 403, 82.
62 Zhang J L, Chen H B, Wen M, et al. Advanced Functional Materials, 2022, 32, 2110110.
63 Yuan Q B, Hen Y B, Lv W, et al. Advanced Materials, 2016, 28(32), 6932.
64 Jiang W F, Wang S, Wang Y, et al. Energy Tenchnology, 2023, 11(6), 2300053.
65 Cui X X, Yang J, Xu Z X, et al. Nano Energy, 2022, 95, 107013.
66 Jiang Y, Zhang W Q, Qi Y Y, et al. Nanomaterials, 2023, 13, 1400.
67 Lin K, Li T, Chang S W, et al. Small, 2020, 16, 2001784.
68 Wang N, Hang T, Ling H Q, et al. Journal of Materials Chemistry A, 2015, 3, 11912.
69 Long J, Liu H L, Xie Y X, et al. Materials, 2018, 11, 1338.
70 Moon S H, Kim S J, Kim M C, et al. Materials Chemistry and Physics, 2019, 223, 152.
71 Bao Q, Lee J, Duh J G, et al. Materials Letters, 2017, 202, 28.
72 Zhao Y C, Liu C G, Sun Y, et al. Journal of Alloys and Compounds, 2019, 803, 505.
73 Zhang X Y, Wang A X, Lv R J, et al. Energy Storage Materials, 2019, 18, 199.
74 Liu X F, Wang D, Zhang B S, et al. Electrochimica Acta, 2018, 268, 234.
75 Xiao Z E, Rao X F, Chen J, et al. Materials Chemistry Frontiers, 2022, 6(17), 2478.
76 Chen K T, Yang Y C, Yi Y H, et al. Journal of Colloid and Interface Science, 2021, 598, 155.
77 Wen Z X, Fang W Q, Chen L, et al. Advanced Functional Materials, 2021, 31(42), 2104930.
78 Elshkaki A, Graedel T E, Ciacci L, et al. Global Environmental Change, 2016, 39, 305.
79 Ghosh S. Thin Solid Films, 2019, 669, 641.
80 Ye Y S, Chou L Y, Liu Y Y, et al. Nature Energy, 2020, 5, 786.
81 Zhang Y S, Liu Y, Tang Y Z, et al. Journal of Electroanalytical Chemistry, 2022, 918, 116495.
82 Wang W Z, Li F J, Xu Y, et al. Journal of Materials Research and Technology, 2022, 19, 1724.
[1] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[2] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[3] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[4] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[5] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[6] 刘菁, 张建, 赵波. 光电忆阻器用于突触仿生领域的研究进展[J]. 材料导报, 2024, 38(4): 22060027-10.
[7] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[8] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[9] 蒋修明, 丁湛, 孙超, 岳磊, 栗慧峰, 栗培龙. 生物基树脂改性沥青流变特性评价及体系融合行为[J]. 材料导报, 2024, 38(2): 22040409-7.
[10] 孔令云, 席晗. 道路沥青紫外老化及抗老化材料研究综述[J]. 材料导报, 2024, 38(1): 22060166-13.
[11] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[14] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[15] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed