Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060045-6    https://doi.org/10.11896/cldb.22060045
  无机非金属及其复合材料 |
温度对水性聚氨酯-混凝土宏微观粘结特性的影响
唐建辉1, 白银1, 陈徐东2,*, 张伟3
1 南京水利科学研究院材料结构研究所,南京 210029
2 河海大学土木与交通学院,南京 210098
3 深圳市东江水源工程管理处,广东 深圳 518036
Effect of Temperature on Macro- and Micro-Bonding Characteristics Between Waterborne Polyurethane and Concrete
TANG Jianhui1, BAI Yin1, CHEN Xudong2,*, ZHANG Wei3
1 Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
3 Dongjiang Water Source Project Management Division of Shenzhen, Shenzhen 518036, Guangdong, China
下载:  全 文 ( PDF ) ( 25519KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究环境温度对水性聚氨酯(WPU)与混凝土宏微观界面粘结特性的影响,测试了20 ℃、35 ℃和50 ℃下水性聚氨酯的质量损失、拉伸强度和拉断伸长率随龄期的发展规律,研究了温度对水性聚氨酯与混凝土粘结强度和破坏模式的影响,并通过SEM和EDS分析了界面区的微观形貌特征和界面区厚度。结果表明:水性聚氨酯的质量损失随着温度的升高而加快,即成膜速度也更快。升高环境温度可提高水性聚氨酯的早期拉伸强度,但在较高温度(50 ℃)下水性聚氨酯的后期拉伸强度会降低。宏观上界面粘结强度随着温度的升高和龄期的延长而逐渐增加,并且粘结破坏由单一界面模式向复合破坏模式转变。在微观上,温度的升高使得界面区聚氨酯硬段含量增加,界面区厚度也由44.21 μm增加至65.08 μm,这是粘结强度随温度升高而增加的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐建辉
白银
陈徐东
张伟
关键词:  水性聚氨酯  混凝土  温度  粘结特性  微观形貌    
Abstract: In order to understand the influence of ambient temperature on the macro- and micro-bonding characteristics of the interfacial between waterborne polyurethane (WPU) and concrete, the change of the mass loss, tensile strength and elongation at break of WPU at 20 ℃, 35 ℃ and 50 ℃ with age were tested. The influence of temperature on the bonding strength and failure mode between WPU and concrete was studied, and the micro-morphology and thickness of interfacial zone were analyzed by SEM and EDS. The results show that the mass loss of WPU increases with the increase of temperature, which indicates that film-forming speed become faster. Increasing the temperature can improve the early tensile strength of WPU, but the later tensile strength of WPU at higher temperature (50 ℃) decreases. With the increase of temperature and age, the interfacial bonding strength gradually increases, and the failure mode changes from single interface to composite failure mode. Microscopically, the increase of temperature makes the content of polyurethane hard segment in the interfacial zone gather, and the thickness of the interfacial zone increases from 44.21 μm to 65.08 μm, which leads to the increase of bonding strength.
Key words:  waterborne polyurethane    concrete    temperature    bonding characteristic    microstructure
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TU577  
基金资助: 国家重点研发计划(2020YFC1511902);国家自然科学基金(51739008)
通讯作者:  *陈徐东,河海大学土木与交通学院教授、博士研究生导师。2007年河海大学土木工程专业本科毕业,2014年河海大学结构工程专业博士毕业。目前主要从事混凝土结构耐久性、新型建筑材料及修补加固等方面的研究工作,主持国家自然科学基金、江苏省优秀青年基金项目、国家重点研发计划项目子专题等科研课题。近年来在混凝土材料领域发表论文100余篇,包括Journal of Mate-rials in Civil Engineering(ASCE)、Construction and Building Materials、Engineering Geology、Rock Mechanics and Rock Enginee-ring、《建筑材料学报》和《复合材料学报》等期刊。cxdong1985@163.com   
作者简介:  唐建辉,2019年6月、2023年6月分别于河海大学获得硕士学位和博士学位。现为南京水利科学研究院博士后。目前主要研究领域为水工混凝土建筑物表面病害治理与防护。
引用本文:    
唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
TANG Jianhui, BAI Yin, CHEN Xudong, ZHANG Wei. Effect of Temperature on Macro- and Micro-Bonding Characteristics Between Waterborne Polyurethane and Concrete. Materials Reports, 2024, 38(4): 22060045-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060045  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22060045
1 Liu F, Zhang K K, Luo T, et al. Materials Reports, 2022, 36(8), 116 (in Chinese).
刘方, 张昆昆, 罗滔, 等. 材料导报, 2022, 36(8), 116.
2 Pan X, Shi Z, Shi C, et al. Construction and Building Materials, 2017, 132, 578.
3 He X Y, Li Y Q, Qin L D, et al. Journal of Functional Materials, 2022, 53(4), 111 (in Chinese).
何晓雁, 李毓佺, 秦立达, 等. 功能材料, 2022, 53(4), 111.
4 Zhang C, Li W H, Fan J P, et al. Concrete, 2019(12), 165 (in Chinese).
张铖, 李维红, 范金朋, 等. 混凝土, 2019(12), 165.
5 Wang Y Y, Chen L, Wang Z Q. Materials Reports, 2016, 30(9), 81 (in Chinese).
王媛怡, 陈亮, 汪在芹. 材料导报, 2016, 30(9), 81.
6 Meng Y G, Wang X Y. Surface Technology, 2018, 47(4), 274 (in Chinese).
孟永刚, 王向阳. 表面技术, 2018, 47(4), 274.
7 Chen Y, Liu Z Y, Guan H Y, et al. Materials Reports, 2021, 35(13), 13205 (in Chinese).
陈阳, 刘志勇, 管焓宇, 等. 材料导报, 2021, 35(13), 13205.
8 Somarathna H, Raman S N, Mohotti D, et al. Construction and Building Materials, 2021, 270, 121860.
9 Zhang S J, Wang R, Zhang L. Acta Materiae Compositae Sinica, 2010, 27(3), 190 (in Chinese).
张淑洁, 王瑞, 张丽. 复合材料学报, 2010, 27(3), 190.
10 Hao Y H, Xuan J Y, Ma S H, et al. Journal of Building Materials, 2021, 24(4), 794 (in Chinese).
郝贠洪, 宣姣羽, 马思晗, 等. 建筑材料学报, 2021, 24(4), 794.
11 Garbacz A, Piotrowski T, Courard L, et al. Construction and Building Materials, 2017, 134, 311.
12 Zhang H L, Yao R F, Luo W Y. Journal of Building Materials, 2009, 12(3), 292 (in Chinese).
张慧莉, 姚汝方, 雒望余. 建筑材料学报, 2009, 12(3), 292.
13 Liu M M, Han S, Pan J, et al. Materials Reports, 2018, 32(10), 1716 (in Chinese).
刘梦梅, 韩森, 潘俊, 等. 材料导报, 2018, 32(10), 1716.
14 Lin J W, Li F, Zhang D H, et al. Digital Printing, 2021(3), 130(in Chinese).
林健伟, 李菲, 张德浩, 等. 数字印刷, 2021(3), 130.
15 Dong Q X, Li S M, Zheng X G, et al. China Plastics, 2018, 32(9), 36 (in Chinese).
董全霄, 李书明, 郑新国, 等. 中国塑料, 2018, 32(9), 36.
16 Boubakri A, Elleuch K, Guermazi N, et al. Materials & Design, 2009, 30(10), 3958.
17 Standardization Administration of the People’s Republic of China. Test methods for building waterproofing coatings: GB/T 16777-2008. China Standards Press, China, 2008 (in Chinese).
中国国家标准化管理委员会. 建筑防水涂料试验方法: GB/T 16777-2008, 中国标准出版社, 2008.
18 Zeng G P, Wang L L, Dai G T, et al. New Chemical Materials, 2022, 50(1), 20 (in Chinese).
曾国屏, 王玲玲, 戴国太, 等. 化工新型材料, 2022, 50(1), 20.
19 Zhu H, Yan Z H, Xu Q, et al. Acta Polymerica Sinica, 2007(9), 892 (in Chinese).
朱宏, 颜志鸿, 徐强, 等. 高分子学报, 2007(9), 892.
20 Zhao P Z, Hu F Y, Huang X R. Engineering Plastics Application, 2011, 39(8), 32 (in Chinese).
赵培仲, 胡芳友, 黄旭仁. 工程塑料应用, 2011, 39(8), 32.
21 Li Z F, Yang G H, Li D H, et al. Spectroscopy and Spectral Analysis, 2000(3), 318 (in Chinese).
李再峰, 杨光华, 李德和, 等. 光谱学与光谱分析, 2000(3), 318.
22 Jkp A, Min O. Journal of Building Engineering, 2021, 38, 102223.
23 Zheng J. Research on the relationship between waterborne polyurethane molecular structure and the adhesive strength. Master’s Thesis, North University of China, China, 2014 (in Chinese).
郑静. 水性聚氨酯分子结构与粘结强度的关系研究. 硕士学位论文, 中北大学, 2014.
24 Sadowski Ł,Żak A, Hola J. Archives of Civil and Mechanical Enginee-ring, 2018, 18(2), 573.
[1] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[2] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[3] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[4] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[5] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[6] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[7] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[8] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[9] 卢通, 钱珊珊, 刘晓, 高瑞军, 郑春扬. 柠檬酸改性低分子量减水剂的合成、性能及机理[J]. 材料导报, 2024, 38(2): 22020188-6.
[10] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[11] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[12] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[13] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[14] 冒海燕, 朱淼, 朱雪峰, 郭子怡, 廖成成, 何雪梅, 宋晓蕾. 基于刚果红的高分子染料制备及pH响应变色性能[J]. 材料导报, 2023, 37(9): 21040018-6.
[15] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed