Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22060026-13    https://doi.org/10.11896/cldb.22060026
  无机非金属及其复合材料 |
部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制
王家滨1,2,3,*, 范一杰1,3, 牛荻涛2, 王宇1,3, 张凯峰4
1 西安工业大学建筑工程学院,西安 710021
2 西安建筑科技大学绿色建筑全国重点实验室,西安 710055
3 西安工业大学西安市军民两用土木工程测试技术与毁损分析重点实验室,西安 710021
4 中建西部建设北方有限公司,西安 710065
Durability Degradation Characteristics and Mechanism of Partial Immersed Recycled Aggregate Concrete Subjected to Composite Salt Attack of Magnesium-Sulfate-Chloride
WANG Jiabin1,2,3,*, FAN Yijie1,3, NIU Ditao2, WANG Yu1,3, ZHANG Kaifeng4
1 Civil & Architecture Engineering, Xi’an Technological University, Xi’an 710021, China
2 State Key Laboratory of Green Building, Xi’an University of Architecture & Technology, Xi’an 710055, China
3 Xi’an Key Laboratory of Civil Engineering Testing and Destruction Analysis on Military-Civil Dual Use Technology, Xi’an Technological University, Xi’an 710021, China
4 China West Construction North Co., Ltd., Xi’an 710065, China
下载:  全 文 ( PDF ) ( 39212KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为系统研究与揭示西北地区部分掩埋再生混凝土(RAC)结构耐久性损伤特征与机制,以浓度为20%的复合盐溶液为侵蚀介质,开展了14种掺辅助胶凝材料RAC部分浸泡于复合盐溶液的耐久性试验,综合分析RAC动弹性模量、宏观与微观形貌、侵蚀产物物相组成与相对含量的经时变化规律。部分浸泡RAC沿纵向高度分为饱和区、气-液两相界面区、水分传输区及干燥区。侵蚀初期气-液两相界面区损伤程度高于饱和区;侵蚀中后期饱和区的损伤持平或超过气-液两相界面区,水分传输区损伤初现。饱和区侵蚀状态由初期的化学侵蚀转变为中后期的化学-物理双重侵蚀,气-液两相界面区在侵蚀期间均呈现出化学-物理双重侵蚀。化学侵蚀产物为水镁石、硬石膏/石膏、钙矾石、Friedel盐及碱式氯化镁;物理结晶盐包含氯镁石、白钠镁矾、氯化钠、水合硫酸镁、Na2SO4及芒硝,各侵蚀产物与结晶盐的相对含量均随浸泡时间延长而改变。侵蚀后期,Na2SO4和芒硝相互转化使RAC物理力学性能急速退化。粉煤灰-矿渣复掺RAC抗侵蚀性能整体较好,粉煤灰-硅灰复掺最差,后者在浸泡时间180 d时抗压强度损失率高于60%。矿渣-硅灰-偏高岭土三掺RAC耐久性显著高于粉煤灰-矿渣-偏高岭土三掺,后者在侵蚀180 d时已经溃散。四掺辅助胶凝材料RAC性能衰减速度均匀,但抗侵蚀性能仍处于较低水平,相同浸泡时间下,其耐久性指标均与粉煤灰-矿渣复掺RAC差距较大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
范一杰
牛荻涛
王宇
张凯峰
关键词:  再生混凝土  Mg2+-SO42--Cl-侵蚀  部分浸泡  耐久性退化特征  耐久性退化机制    
Abstract: In order to investigate the durability degradation characteristics and mechanism of partial burial recycled aggregate concrete (RAC) structure members in Northwest China, the durability experiment of 14 mixtures about RAC with supplementary cementitious materials (SCMs) of fly ash, granulated blast furnace slag, silica fume and metakaolin, respectively, was conducted for partial immersed in compound salt solution with MgSO4, Na2SO4 and NaCl. Comprehensively analyzed the relative dynamic elastic modulus, macro-and micro-morphology, and mineral composition and its relative content, the partial immersed RAC can be divided into four corrosive zones of saturation zone, air-liquid two-phased transition zone, moisture transport zone and dry zone, respectively, along the longitudinal direction. At initial stage of partial immersed, the degradation of air-liquid two-phased transition zone was higher than that of saturation zone, while the damage in saturation zone was equal to or over than that of air-liquid two-phased transition zone at the middle and late stage. Concurrently, the damage in moisture transport zone was formed and continued to develop slowly. With immersed aging increased, the destruction mechanism of saturation zone changed from chemical attack to chemical-physical attack, while that of the air-liquid two-phased transition zone was due to chemical-physical attack. The chemistry corrosive products of brucite, anhydrite, gypsum and chloromagnesite existed throughout the corrosion, but ettringite, Friedel’s salt and Mg10(OH)18Cl2·5H2O disappeared at the late stage of corrosion. And the physical crystalline salts included blodite, halite, MgSO4·xH2O, thenardite and mirabilite. The phase transformation between thenardite and mirabilite formed the great salt crystallization pressure in pores and micro-cracks, which rapidly decreased of RAC durability. At immersion time of 180 days, the corrosion resistance of RAC with fly ash and GBFS was generally well, however, the loss rate of compressive strength of RAC with fly ash and silica fume was more than 60%. In addition, the durability of RAC with GBFS-silica fume-metakaolin was much higher than that of RAC with fly ash-GBFS-metakaolin, which had spalled off grievously. Although a stable decreased rate, the resistance performance of RAC with four SCMs was still at the low level, compared to that of RAC with fly ash and GBFS at the same immersed time.
Key words:  recycled aggregate concrete    Mg2+-SO42--Cl-salts corrosion    partial immersion    durability degradation characteristics    durability degradation mechanism
发布日期:  2024-01-16
ZTFLH:  TU528.44  
基金资助: 国家自然科学基金(51908440);绿色建筑全国重点实验室开放基金(LSKF202216)
通讯作者:  王家滨,西安工业大学建筑工程学院副教授。2012年硕士毕业于西安建筑科技大学材料科学与工程学院,2017年博士毕业于西安建筑科技大学土木工程学院。主要从事混凝土结构耐久性相关方面的研究。主持/参与国家自然科学基金和省部级项目7项,发表学术论文30余篇。wangjiabin@xatu.edu.cn   
引用本文:    
王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
WANG Jiabin, FAN Yijie, NIU Ditao, WANG Yu, ZHANG Kaifeng. Durability Degradation Characteristics and Mechanism of Partial Immersed Recycled Aggregate Concrete Subjected to Composite Salt Attack of Magnesium-Sulfate-Chloride. Materials Reports, 2024, 38(1): 22060026-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060026  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22060026
1 Pan Y. Recyclable Resources and Circular Economy, 2021, 14(7), 23(in Chinese).
潘永刚. 再生资源与循环经济, 2021, 14(7), 23.
2 Guo H, Shi C, Guan X, et al. Cement and Concrete Composites, 2018, 89, 251.
3 Xiao J, Ma X, Liu Q, et al. Journal of Architecture and Civil Enginee-ring, 2021, 38(2), 1(in Chinese).
肖建庄, 马旭伟, 刘琼, 等. 建筑科学与工程学报, 2021, 38(2), 1.
4 Tang Q, Ma Z, Wu H, et al. Cement and Concrete Composites, 2020, 114, 103807.
5 Wang J, Zhang K, Hou Z, et al. China Civil Engineering Journal, 2020, 53(11), 21(in Chinese).
王家滨, 张凯峰, 侯泽宇, 等. 土木工程学报, 2020, 53(11), 21.
6 Nehdi M L, Suleiman A R, Soliman A M. Cement and Concrete Research, 2014, 64, 42.
7 Wang F, Qin X, Sun R. Bulletin of the Chinese Ceramic Society, 2003(4), 25(in Chinese).
王复生, 秦晓娟, 孙瑞莲. 硅酸盐通报, 2003(4), 25.
8 Zhang Z, Zou Y, Yang J, et al. Cement and Concrete Composites, 2022, 125, 204299.
9 Peng L, Zhao Y, Zhang H. Construction and Building Materials, 2021, 277, 122277.
10 Xie F, Li J, Zhao G, et al. Construction and Building Materials, 2020, 253, 119144.
11 Alyami M H, Alrashidi R S, Mosavi H, et al. Construction and Building Materials, 2019, 229, 116920.
12 Jiang X, Mu S, Yang Z, et al. Construction and Building Materials, 2021, 266, 120936.
13 Ma K, Xie Y, Long G. Journal of the Chinese Ceramic Society, 2012, 40(10), 1448(in Chinese).
马昆林, 谢友均, 龙广成. 硅酸盐学报, 2012, 40(10), 1448.
14 Yang S, Ma Z, Shen Y, et al. Science Technology and Engineering, 2017, 17(16), 295(in Chinese).
杨淑雁, 马钊, 沈益韩, 等. 科学技术与工程, 2017, 17(16), 295.
15 Yang S. Science Technology and Engineering, 2018, 18(4), 143(in Chinese) .
杨淑雁. 科学技术与工程, 2018, 18(4), 143.
16 Liu Z, Zhou X, Peng J, et al. Materials Reports, 2023, 37(3), 20220317(in Chinese).
刘赞群, 周蕴婵, 彭嘉伟, 等. 材料导报, 2023, 37(3), 20220317.
17 Liu Z, Pei M, Zhang F, et al. Journal of Building Materials, 2020, 23(3), 485(in Chinese).
刘赞群, 裴敏, 张丰燕, 等. 建筑材料学报, 2020, 23(3), 485.
18 Bassuoni M T, Rahman M M. Cement and Concrete Research, 2016, 79, 395.
19 Liu Z, Li X, Hou L, et al. Journal of Building Materials, 2017, 20(3), 439(in Chinese) .
刘赞群, 李湘宁, 侯乐, 等. 建筑材料学报, 2017, 20(3), 439.
20 Sakr M R, Bassuoni M T. Cement and Concrete Research, 2021, 141, 106324.
21 Du J, Tang Z, Li G, et al. Construction and Building Materials, 2019, 225, 611.
22 Du J, Liu Z, Sun J, et al. Construction and Building Materials, 2022, 211, 126370.
23 Zhang C, Liu Q. Materials Reports, 2022, 36(1), 20100075(in Chinese).
张成琳, 刘清风. 材料导报, 2022, 36(1), 20100075.
24 Zhang C, Chen W, Mu S, et al. Construction and Building Materials, 2021, 285, 122806.
25 Chen W, Liu Q. Journal of Hydraulic Engineering, 2021, 52(5), 622(in Chinese) .
陈伟康, 刘清风. 水利学报, 2021, 52(5), 622.
26 Zhao G, Guo M, Cui J, et al. Construction and Building Materials, 2021, 294, 123560.
27 Liu P, Chen Y, Wang W, et al. Chemical Physics Letters, 2020, 745, 137254.
28 Juenger M C G, Snellings R, Bernal S A. Cement and Concrete Research, 2019, 122, 267.
29 Chen W, Brouwers H J H. Journal of Materials Science, 2007, 42, 444.
30 Zhang Z, Zhou J, Yang J, et al. Construction and Building Materials, 2020, 260, 119932.
31 Najjar M F, Nehdi M L, Soliman A M, et al. Construction and Building Materials, 2017, 137, 141.
32 Scherer G W. Cement and Concrete Research, 2004, 34, 1613.
33 Ke G, Zhang J, Liu Y, et al. Powder Technology, 2021, 387, 146.
34 Wang J, Hou Z, Zhang K, et al. Materials Reports, 2022, 36(12), 21060067 (in Chinese).
王家滨, 侯泽宇, 张凯峰, 等. 材料导报, 2022, 36(12), 21060067.
35 Liu K, Wang S, Quan X, et al. Construction and Building Materials, 2021, 294, 123554.
36 Cheng S, Shui Z, Li Q, et al. Construction and Building Materials, 2016, 127, 59.
37 Barbhuiya S, Chow P, Memon S. Construction and Building Materials, 2015, 95, 696.
38 Xie N, Dang Y, Shi X. Cement and Concrete Research, 2019, 120, 244.
39 Chen X, Lyu S, Zhang L, et al. Journal of Inorganic Materials, 2010, 25(2), 129(in Chinese).
陈雪刚, 吕双双, 张路, 等. 无机材料学报, 2010, 25(2), 129.
40 Gou S, Nai X, Xiao J, et al. Journal of Inorganic Materials, 2019, 34(7), 781(in Chinese).
苟生莲, 乃学瑛, 肖剑飞, 等. 无机材料学报, 2019, 34(7), 781.
41 Axel N C, Torben R J, Jonathan C H. Journal of Solid State Chemistry, 2004, 177(6), 1944.
42 Thaulow N, Sahu S. Materials Characterization, 2004, 53, 123.
43 Dominik N, Kasper E R, Emilie L, et al. Cement and Concrete Research, 2016, 79, 323.
44 Ellina B, Barbara L, Christophe C, et al. Cement and Concrete Research, 2019, 116, 309.
45 Yan N, Yue W. The handbook of inorganic metalloid materials atlas, Wuhan University of Technology Press, China, 2000(in Chinese).
杨南如, 岳文海. 无机非金属材料图谱手册, 武汉工业大学出版社, 2000.
46 Wang J, Niu D, Wang Y, et al. Constructure and Building Materials, 2018, 188, 520.
[1] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[2] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[3] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[4] 林一柯, 何廷树, 达永琪. 自磨改性对再生粗骨料及再生混凝土性能的影响[J]. 材料导报, 2023, 37(16): 22020144-6.
[5] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[6] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[7] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[8] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[9] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[10] 王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
[11] 郭利霞, 李松, 钟凌, 郭磊, 汪伦焰, 张芳芳. 数值模拟骨料颗粒形状和级配对再生混凝土力学性能的影响[J]. 材料导报, 2022, 36(15): 21030052-7.
[12] 王家滨, 侯泽宇, 张凯峰, 王斌, 李恒. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 21060067-8.
[13] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[14] 陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
[15] 陈宇良, 姜锐, 陈宗平, 刘杰. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19): 19015-19021.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed