Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22020144-6    https://doi.org/10.11896/cldb.22020144
  无机非金属及其复合材料 |
自磨改性对再生粗骨料及再生混凝土性能的影响
林一柯, 何廷树*, 达永琪
西安建筑科技大学材料科学与工程学院,西安 710055
Influence of Self-grinding Modification on the Properties of Recycled Coarse Aggregate and Recycled Concrete
LIN Yike, HE Tingshu*, DA Yongqi
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 7448KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了一种新的再生骨料改性技术即自磨改性,系统研究了该技术对再生粗骨料和再生混凝土性能的影响规律,探究了再生微粉附着于再生骨料表面时,对再生混凝土工作性能及力学性能的影响规律。结果表明:自磨改性可以有效改善再生粗骨料的粒形和界面形貌,有利于附着表面砂浆层的剥离,改性后再生粗骨料的表观密度提高了9.7%,压碎指标及吸水率分别降低了37.6%和51.4%,改善了再生混凝土的流动性和黏聚性,有效提升了再生混凝土的抗压强度。再生微粉颗粒尺寸小且表面疏松多孔,同时具有微集料填充效应和火山灰活性,对再生混凝土的后期强度具有明显的提升作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林一柯
何廷树
达永琪
关键词:  自磨改性  再生粗骨料  再生混凝土  再生微粉  二次水化    
Abstract: Anew modification technology (self-grinding modification) of recycled coarse aggregate was proposed. The influence laws of self-grinding modification on the properties of recycled coarse aggregate and recycled concrete were systematically studied, the influence laws of the recycled micro-powder on the workability and mechanical properties of recycled concrete when it adhered to the surface of recycled aggregate was explored. The results revealed that the self-grinding modification could effectively improve the particle shape and the interface morphology of recycled coarse aggregate, which is benefit to the stripping of the attached mortar on the surface. After modification, the apparent density of recycled coarse aggregate was increased by 9.7%, the crushing index and water absorption are reduced by 37.6% and 51.4% respectively, the fluidity and cohesion of the prepared recycled concrete were improved, and the compressive strength of recycled concrete was effectively enhanced. Recycled micro-powders had the small particles, loose and porous surface, and it presented the micro-aggregate filling effect and pozzolanic activity, which could effectively improve the later compressive strength of recycled concrete.
Key words:  self-grinding modification    recycled coarse aggregate    recycled concrete    recycled micro-powder    second hydration
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52172027)
通讯作者:  *何廷树,西安建筑科技大学材料科学与工程学院教授、博士研究生导师。1987年北京钢铁学院矿物加工工程专业本科毕业,1990年北京科技大学矿物加工工程专业硕士毕业后到西安建筑科技大学工作至今,1996年东北大学矿物加工工程专业博士毕业。目前主要从事高强高性能混凝土、混凝土外加剂及固体废弃物资源化利用的研究工作。发表论文200余篇,包括Journal of Hazardous Mate-rials、Journal of Cleaner Production、Construction and Building Materials、Journal of Alloys and Compounds等。hetingshu@xauat.edu.cn   
作者简介:  林一柯,2018年6月于仲恺农业工程学院获得工学学士学位。现为西安建筑科技大学材料科学与工程学院硕士研究生,在何廷树教授的指导下进行研究。目前主要研究领域为固体废弃物资源化利用。
引用本文:    
林一柯, 何廷树, 达永琪. 自磨改性对再生粗骨料及再生混凝土性能的影响[J]. 材料导报, 2023, 37(16): 22020144-6.
LIN Yike, HE Tingshu, DA Yongqi. Influence of Self-grinding Modification on the Properties of Recycled Coarse Aggregate and Recycled Concrete. Materials Reports, 2023, 37(16): 22020144-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020144  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22020144
1 Bao J W, Li S G, Zhang P, et al. Construction and Building Materials, 2020,239, 117845.
2 Pandurangan K, Dayanithy A, Prakash S. Construction and Building Materials, 2016, 120, 212.
3 Li Q Y, Li Y X, Zhu C J. Materials Science & Technology, 2005, 13(6), 579 (in Chinese).
李秋义, 李云霞, 朱崇绩.材料科学与工艺, 2005, 13(6), 579.
4 Tam V W Y, Gao X F, Tam C M. Cement and Concrete Research, 2005, 35(6), 1195.
5 Li Y, Fu T, Wang R, et al. Construction and Building Materials, 2020, 236, 117543.
6 Yu X X. Study on activation and function of recycled powder of waste concrete. Master's Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese).
余小小. 废弃混凝土再生微粉的活化及功能性研究. 硕士学位论文, 昆明理工大学, 2017.
7 Mao X, Qu W, Zhu P, et al. Construction and Building Materials, 2020, 251, 119049.
8 Mehdizadeh H, Ling T, Cheng X, et al. Canadian Journal of Civil Engineering, 2021, 48, 522.
9 Mao G F, Teng Z G, Shangguan Y M, et al. Journal of Qingdao Technological University, 2009, 30(4), 132 (in Chinese).
毛高峰, 滕祖光, 上官玉明, 等.青岛理工大学学报, 2009, 30(4), 132.
10 Mora C F, Kwan A K H. Cement and Concrete Research, 2000, 30, 351.
11 Etxeberria M, Vazquez E, Mari A, et al. Cement and Concrete Research, 2007, 37(5), 735.
12 Lin K L, Wu H H, Shie J L, et al. Waste Management & Research, 2010,28(7), 653.
13 Shi X S, Collins F G, Zhao X L, et al. Journal of Hazardous Materials, 2012, 237-238, 20.
14 Liu Y, Lu C, Zhang H Q, et al. China Powder Science and Techinology, 2015, 21(5), 33 (in Chinese).
刘音, 路畅, 张浩强, 等.中国粉体技术, 2015, 21(5), 33.
15 Deng Y, Jian S W. Journal of Wuhan University of Technology, 2013, 35(5), 37 (in Chinese).
邓洋, 蹇守卫.武汉理工大学学报, 2013, 35(5), 37.
16 Shi H S, Ju Z H, Guo X L, et al. Research & Application of Building Materials, 2014(6), 11 (in Chinese).
施惠生, 居正慧, 郭晓潞, 等.建材技术与应用, 2014(6), 11.
17 Cao Y B. Study on multi-interface microstructure of recycled concrete. Master's Thesis, Qingdao University of Technology, China, 2016 (in Chinese).
曹瑜斌. 再生混凝土多重界面显微结构研究. 硕士学位论文, 青岛理工大学, 2016.
18 Yang B. Study on interface microstructure of cement-based materials based on high resolution X-CT. Master's Thesis, Southeast University, China, 2018 (in Chinese).
杨彬. 基于高分辨X-CT的水泥基材料界面微结构研究.硕士学位论文, 东南大学, 2018.
19 Kuma M, Paul J M M. Microstructure, properties and materials of concrete, China Electric Power Press, China, 2016, pp. 32 (in Chinese).
库马梅塔, 保罗 J M 蒙蒂罗.混凝土微观结构、性能和材料, 中国电力出版社, 2016, pp. 32.
20 Kou S, Poon C, Agrela F. Cement and Concrete Composites, 2011, 33(8), 788.
21 Yang R H, He T S. Construction and Building Materials, 2021, 295, 123659.
22 Ge Z, Wang H, Zheng L, et al. Journal of Shandong University (Engineering Science), 2012, 42(1), 104 (in Chinese).
葛智, 王昊, 郑丽, 等.山东大学学报(工学版), 2012, 42(1), 104.
[1] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[2] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[3] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[4] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[5] 肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
[6] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[7] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[8] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[9] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[10] 王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
[11] 郭利霞, 李松, 钟凌, 郭磊, 汪伦焰, 张芳芳. 数值模拟骨料颗粒形状和级配对再生混凝土力学性能的影响[J]. 材料导报, 2022, 36(15): 21030052-7.
[12] 王家滨, 侯泽宇, 张凯峰, 王斌, 李恒. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 21060067-8.
[13] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[14] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[15] 陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed