Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22030032-6    https://doi.org/10.11896/cldb.22030032
  金属与金属基复合材料 |
磁控溅射纳米银含量对钛种植体抗菌性的影响
程培雪1, 马迅1, 刘平1, 王静静1, 马凤仓1, 张柯1, 陈小红1, 刘剑楠2,*, 李伟1,*
1 上海理工大学材料与化学学院,上海 200093
2 上海交通大学医学院附属上海第九人民医院,上海 200011
Effect of Magnetron Sputtering Nano-Ag Content on Antibacterial Properties of Titanium Implants
CHENG Peixue1, MA Xun1, LIU Ping1, WANG Jingjing1, MA Fengcang1, ZHANG Ke1, CHEN Xiaohong1, LIU Jiannan2,*, LI Wei1,*
1 School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Shanghai Ninth People's Hospital Affiliated to School of Medicine of Shanghai Jiao Tong University, Shanghai 200011, China
下载:  全 文 ( PDF ) ( 9200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纯钛因具有优良的生物相容性,被广泛应用于口腔种植相关领域,但其本身并不具备抗菌性能,为改善钛种植体表面的抗菌性,采用磁控溅射法在钛种植体表面制备Ti-Ag纳米复合涂层,研究了涂层中纳米Ag含量对具核梭杆菌(Fusobacterium nucleatum, Fn)抗菌性能的影响。分析了样品的表面形貌、粗糙度和水接触角;对Ag+释放进行了检测;采用CCK-8法检测材料的细胞毒性;将各组样品与具核梭杆菌共培养,检测材料的抗菌性能。结果表明,载Ag复合涂层成功沉积在Ti片表面,并且随着纳米Ag含量的增加,样品的表面粗糙度和水接触角均增大。该Ti-Ag纳米复合涂层对小鼠L929细胞未表现出细胞毒性,符合生物安全标准。抗菌实验结果表明,随着纳米Ag含量的增加,Ag+释放量增加,涂层的抗菌效果也增强。可见,Ti-Ag纳米复合涂层可有效抑制Fn的生长,有望提高钛种植体的抗菌性能,为其临床运用奠定了实验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程培雪
马迅
刘平
王静静
马凤仓
张柯
陈小红
刘剑楠
李伟
关键词:  磁控溅射  钛种植体  纳米银  细胞毒性  抗菌性    
Abstract: Pure titanium is widely used in oral implant-related fields because of its excellent biocompatibility, but it does not have antibacterial properties by itself. In order to improve the antibacterial properties of titanium implants surfaces, this paper used magnetron sputtering to prepare Ti-Ag nanocomposite coating on the surface of titanium implants and investigated the effect of nano-Ag content in the coating on the antibacterial properties of Fusobacterium nucleatum (Fn). The surface morphology, roughness and water contact angle of the samples were analyzed; the Ag+ release was examined; the cytotoxicity of the materials was examined by the CCK-8 method; and each group of samples were co-cultured with Fusobacterium nucleatum to examine the antibacterial properties of the materials. The results showed that the Ag-loaded composite coating was successfully deposited on the Ti sheet surface, and the surface roughness and water contact angle of the samples increased with the increase of nano-Ag content. The Ti-Ag nanocomposite coating did not exhibit cytotoxicity to mouse L929 cells and met biosafety standards. The results of antibacterial experiments showed that with the increase of nano-Ag content, the Ag+ release increased and the antibacterial effect of the coating was enhanced. It is concluded that the Ti-Ag nanocomposite coating can effectively inhibit the growth of Fn, which is expected to improve the antibacterial performance of titanium implants and lay an experimental foundation for its clinical application.
Key words:  magnetron sputtering    titanium implant    nano-Ag    cytotoxicity    antibacterial property
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51971148)
通讯作者:  *刘剑楠,上海交通大学医学院附属第九人民医院口腔颌面头颈肿瘤科副主任医师,联合培养导师。2012年吉林大学口腔医学(本硕连读)专业毕业,2015年上海交通大学医学院口腔临床医学博士毕业后到上海交通大学医学院附属第九人民医院口腔颌面头颈肿瘤科工作至今。目前主要专注于头颈肿瘤发生、发展的研究及下颌骨重建关键技术的“产医研”转化。以第一和通讯作者身份发表SCI论文13篇、中文核心论文5篇,授权1项国际专利、6项发明专利、7项实用新型专利。荣获2019年国家科技进步二等奖。laurence_ljn@163.com
李伟,上海理工大学材料与化学学院教授,博士研究生导师,上海市高校“东方学者”特聘教授,上海市“曙光学者”。2008年上海交通大学材料物理与化学专业博士毕业后到上海理工大学工作至今,目前主要从事功能薄膜与涂层、生物医用材料、高熵合金材料、物理气相沉积(PVD)技术及其应用相关的研究。在Scripta Materialia、Scientific Reports、Materials Research Letters等国内外杂志发表学术论文80余篇,其中被SCI收录论文近60篇,申请国家发明专利38项,已授权26项。荣获2020年上海市科技进步奖二等奖(排名第一)、2019年上海市科技进步奖一等奖、2017年中国机械工业科学技术奖一等奖。liwei176@usst.edu.cn   
作者简介:  程培雪,2018年7月于上海电机学院获得工学学士学位。现为上海理工大学材料与化学学院硕士研究生,在李伟教授的指导下进行研究。目前主要研究领域为钛种植体表面抗菌涂层。
引用本文:    
程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
CHENG Peixue, MA Xun, LIU Ping, WANG Jingjing, MA Fengcang, ZHANG Ke, CHEN Xiaohong, LIU Jiannan, LI Wei. Effect of Magnetron Sputtering Nano-Ag Content on Antibacterial Properties of Titanium Implants. Materials Reports, 2023, 37(16): 22030032-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030032  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22030032
1 Brennan C A, Garrett W S. Nature Reviews Microbiology, 2019, 17 (3), 156.
2 Bui V D, Mwangi J W, Meinshausen A K, et al. Surface and Coatings Technology, 2020, 383, 125.
3 Flores C Y, Diaz C, Rubert A, et al. Journal of Colloid and Interface Science, 2010, 350(2), 402.
4 Alqattan M, Peters L, Yang F, et al. Journal of Alloys and Compounds, 2020, 856, 158165.
5 Diefenbeck M, Schrader C, Gras F, et al. Biomaterials, 2016, 101, 156.
6 Li B, Zhang L, Wang D, et al. Materials Science and Engineering C, 2021, 122, 111878.
7 Kumar R, Umar A, Kumar G, et al. Ceramics International, 2017, 43(5), 3940.
8 Qing Y A, Li R Y, Liu G C, et al. Biological Orthopaedic Materials and Clinical Research, 2017, 14(4), 67 (in Chinese).
卿云安, 李瑞延, 刘贯聪, 等. 生物骨科材料与临床研究, 2017, 14(4), 67.
9 Socol G, Macovei A M, Miroiu F, et al. Materials Science and Enginee-ring B, 2010, 169(1), 159.
10 Liu X J, Gan K, Liu H, et al. Dental Materials, 2017, 33(9), 348.
11 Cao H, Liu X, Meng F, et al. Biomaterials, 2011, 32(3), 693.
12 Qing Y A. Antibacterial properties of TaN-Ag composite coatings on medical titanium alloy surface. Master's Thesis, Jilin University, China, 2019 (in Chinese).
卿云安. 医用钛合金表面TaN-Ag复合涂层抗菌性能的研究. 硕士学位论文, 吉林大学, 2019.
13 Barão V A R, Yoon C J, Mathew M T, et al. Journal of Periodontology, 2014, 85(9), 1275.
14 An Y H, Friedman R J. Journal of Biomedical Materials Research, 1998, 43(3), 338.
15 Sulej-Chojnacka J, Kloskowski T, Borowski J, et al. Journal of Biomaterials and Tissue Engineering, 2016, 6(6), 463.
16 Hauslich L B, Sela M N, Steinberg D, et al. Clinical Oral Implants Research, 2013, 24(A100), 49.
17 Fröjd V, Chávez de P, Andersson M A, et al. Oral Microbiology and Immunology, 2011, 26(4), 241.
18 Bollen C M L, Papaioanno W, Eldere J V, et al. Clinical Oral Implants Research, 1996, 7(3), 201.
19 Das T, Sharma P K, Busscher H J, et al. Applied and Environmental Microbiology, 2010, 76(10), 3405.
20 Drake D R, Paul J, Keller J C. International Journal of Oral and Maxillofacial Implants, 1999, 14(2), 226.
21 Wang H, Lu T, Meng F, et al. Colloids and Surfaces B Biointerfaces, 2014, 117, 89.
22 Sondi I, Salopek-Sondi B. Journal of Colloid and Interface Science, 2004, 275(1), 177.
22030032-523 Ramamurthy C, Padma M, Samadanam I M, et al. Colloids and Surfaces B: Biointerfaces, 2013, 102, 808.
24 Espinosa-Cristóbal L F, Martínez-Castañón G A, Téllez-Déctor E J, et al. Materials Science and Engineering C, 2013, 33(4), 2197.
25 Hernández-Sierra J F, Ruiz F, Pena D C C, et al. Nanomedicine: Nanotechnology, Biology and Medicine, 2008, 4(3), 237.
26 Imazato S, Kinomoto Y, Tarumi H, et al. Dental Materials, 2003, 19(4), 313.
[1] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[2] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[3] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[4] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[5] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[6] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[7] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[8] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[9] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[10] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[11] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[12] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[13] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[14] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[15] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed