Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21010184-6    https://doi.org/10.11896/cldb.21010184
  无机非金属及其复合材料 |
工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响
张亚南, 周子超, 张豪*, 肖宇琦, 邓娜, 付彬芸, 多树旺*
江西科技师范大学材料与机电学院,江西省材料表面工程重点实验室,南昌 330013
Influence of Deposition Parameters on Microstructure and Properties of Plasma-enhanced, Magnetron-sputtered TiAlN Coatings
ZHANG Yanan, ZHOU Zichao, ZHANG Hao*, XIAO Yuqi, DENG Na, FU Binyun, DUO Shuwang
Jiangxi Key Laboratory of Surface Engineering, School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 10376KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作引入正交试验法,以等离子增强磁控溅射TiAlN涂层的润湿性为试验指标,探究靶功率、Ar/N2流量比和基体负偏压对试验指标的影响规律。使用能谱仪(EDS)、X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和原子力显微镜(AFM)分析涂层的化学成分、晶体结构、微观形貌和表面粗糙度。通过测试接触角表征涂层的润湿性。极差分析结果表明,Al靶功率和Ar/N2流量比对涂层中Al含量的影响最敏感,基体负偏压是决定涂层的晶粒度、粗糙度及接触角的最主要因素。S2工艺制备的涂层具有最佳的疏水性能,接触角为120.25°。S9工艺制备的涂层具有最强的亲水性能,接触角仅为15.15°。研究结果可为工程应用涂层工艺的选择提供一定的参考依据和分析思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亚南
周子超
张豪
肖宇琦
邓娜
付彬芸
多树旺
关键词:  正交试验法  等离子增强磁控溅射  TiAlN涂层  接触角    
Abstract: In this study, an orthogonal test method was introduced. The wettability of TiAlN coatings deposited by plasma enhanced magnetron sputtering was selected as the experimental indicator. Furthermore, target power, Ar/N2 flow ratio and negative bias voltage were sensitivity analysis on the indicator. The chemical composition, crystal structure, micro-morphology and surface roughness of TiAlN coatings were characterized using energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). The wettability of TiAlN coatings was analyzed with the contact angle. Range analysis shows that the factors with the highest sensitivity to the Al content within the coating are Al target power and Ar/N2 flow rate ratio, and the highest sensitivity to the grain size, roughness and contact angle of the coating is the negative bias voltage. The coating produced by S2 process shows the best hydrophobic property with contact angle of 120.25°, while the coating prepared by S9 process presents the strongest hydrophilic property with contact angle of 15.15°. This study provides some directions and ideas for an appropriate selection of coating deposition parameters based on engineering applications.
Key words:  orthogonal test method    plasma-enhanced magnetron sputtering    TiAlN coating    contact angle
发布日期:  2023-01-03
ZTFLH:  TG174.444  
基金资助: 江西省井冈学者奖励计划;国家自然科学基金(51865015);江西省教育厅科技计划项目(GJJ190607; GJJ180596);江西科技师范大学博士科研启动基金(2020BSQD011)
通讯作者:  zhanghao@jxstnu.edu.cn;swduo@126.com   
作者简介:  张亚南,2019年6月毕业于信阳师范学院,获得理学学士学位。于2019年9月至今在江西科技师范大学材料与机电学院学习,主要从事PVD涂层技术的研究。
张豪,江西科技师范大学江西省材料表面工程重点实验室副教授。2013年加入江西科技师范大学任助教,2016年升为讲师,2019年毕业于武汉理工大学,获得材料科学与工程专业工学博士学位。主要从事陶瓷涂层与薄膜材料的制备及应用基础研究,在国内外重要期刊发表40余篇学术论文。
多树旺,江西科技师范大学江西省材料表面工程重点实验室教授。2004年7月毕业于中国科学院金属研究所,获材料学博士学位。同年加入江西科技师范大学材料科学与工程学院工作至今,主要从事PVD硬质涂层的制备与应用研究。在国内外重要期刊发表学术论文100余篇,申请发明专利8项。
引用本文:    
张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
ZHANG Yanan, ZHOU Zichao, ZHANG Hao, XIAO Yuqi, DENG Na, FU Binyun, DUO Shuwang. Influence of Deposition Parameters on Microstructure and Properties of Plasma-enhanced, Magnetron-sputtered TiAlN Coatings. Materials Reports, 2022, 36(24): 21010184-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010184  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21010184
1 Kulkarni A P, Sargade V G. Advanced Manufacturing Processes, 2015, 30(6), 748.
2 Yang G Y, Peng H, Guo H B, et al.Rare Metals, 2017, 36(8), 651.
3 Geng Z, Shi G L, Shao T M, et al.Surface and Coatings Technology, 2019, 364, 99.
4 Huang H, Chen C S, Hu C C, et al. Materials Research Express, 2020, 7(8), 086401.
5 Tang Y, Ma B, Liu B, et al. Rare Metal Materials and Engineering, 2016, 45(12), 3057.
6 Li T T, Jia B, Kuang M, et al. Materials Reports, 2011, 25(S1), 533 (in Chinese).
李同涛, 贾碧, 况敏, 等. 材料导报, 2011, 25(S1), 533.
7 Kwon J S, Park C H, Choi J W, et al.Journal of Nanoscience and Nanotechnology, 2019, 19(10), 6493.
8 Chandra N G P S, Otsuka Y, Mutoh Y, et al. International Journal of Fatigue, 2020, 131, 105338.
9 Liu A H, Deng J X, Cui H B, et al. Transactions of Materials and Heat Treatment, 2012, 33(6), 147 (in Chinese).
刘爱华, 邓建新, 崔海冰, 等. 材料热处理学报, 2012, 33(6), 147.
10 Wang J R,Zhao B, Li G M, et al. Materials Technology, 2020, 35(8), 475.
11 Zhang X, Zhou Y W, Gao J B, et al. Journal of Alloys and Compounds, 2017, 725, 877.
12 Zaman A, Shen Y, Meletis E I.Coatings, 2019, 9(5), 338.
13 Goc K, Prendota W, Przewoznik J, et al.International Journal of Hydrogen Energy, 2018, 43(45), 20836.
14 Wang G H, Shi C Y, Zhao L, et al.Optional Materials, 2020, 109, 110323.
15 Ma J L, Ren F Z, Sun H L, et al. China Science and Education Innovation Guide, 2013(29), 136 (in Chinese).
马景灵, 任风章, 孙浩亮, 等. 中国科教创新导刊, 2013(29), 136.
16 Chang W J.Preparation and properties of CrN based coatings deposited by plasma-enhanced magnetron sputtering. Master's Thesis, Jiangxi Science and Technology Normal University, China, 2019 (in Chinese).
常伟杰. 等离子体增强磁控溅射CrN基涂层的制备及性能研究. 硕士学位论文, 江西科技师范大学, 2019.
17 Zhou Z C, Zhang H, Zhang X, et al. Surface Technology, 2020, 49(8), 185.
周子超, 张豪, 张雪, 等. 表面技术, 2020, 49(8), 185.
18 Sumadiyasa M, Manuaba I B S.Buletin Fisika, 2018, 19(1), 28.
19 Liao F J, Zhao G B, Tan G, et al. Journal of Xihua University, 2014, 33(6), 66 (in Chinese).
廖凤娟, 赵广彬, 谭刚, 等. 西华大学学报, 2014, 33(6), 66.
20 Greczynski G, Jensen J, Böhlmark J, et al.Surface and Coatings Technology, 2010, 205(1), 118.
21 Li B S, Wang T G, Ding J C, et al. Coatings, 2017, 8(1), 3.
22 Xiao B J. Fabrication and properties of AlCrN/AITiSiN nano-layered coatings on cutting tools. Ph.D. Thesis, Guangdong University of Technology, China, 2019 (in Chinese).
肖白军. AlCrN/AITiSiN纳米多层刀具涂层的制备及其性能研究. 博士学位论文, 广东工业大学, 2019.
23 Meng Z L. Study on preparation and properties of TiN and TiAlN films by magnetron sputtering ion plating. Master's Thesis, Xihua University, China, 2013 (in Chinese).
蒙志林. 磁控溅射离子镀TiN、TiAlN膜的制备及性能研究. 硕士学位论文, 西华大学, 2013.
24 Liu C L.Research on properties and structure of TiAlN coatings on cemented carbide cutting tools by ion plating. Master's Thesis, Jiangsu University of Science and Technology, China, 2014 (in Chinese).
刘崇林. 硬质合金刀具离子镀TiAlN镀层结构及性能研究. 硕士学位论文, 江苏科技大学, 2014.
25 Ait-Djafer Z A, Saoula N, Wamwangi D, et al.The European Physical Journal Applied Physics, 2019, 86(3), 30301.
26 Cheng X R, Zhao G B. Journal of Xihua University, 2017, 36(5), 97 (in Chinese).
程玺儒, 赵广彬. 西华大学学报, 2017, 36(5), 97.
27 Wang Y K, Xiong R Z, Lei T Q, et al. Journal of Ningbo University, 2001, 14(4), 48 (in Chinese).
王永康, 熊仁章, 雷廷权, 等. 宁波大学学报, 2001, 14(4), 48.
28 Liu A H, Liu Z S, Zhang P. Advanced Materials Research, 2013, 645, 101.
29 Devia D M, Restrepo-Parra E, Arango P J, et al.Applied Surface Science, 2011, 257(14), 6181.
30 Elmkhah H, Zhang T F, Abdollah-Zadeh A, et al. Journal of Alloys and Compounds, 2016, 688, 820.
31 Wang Y. Study on porous structure preparation and wettability on titanium and titanium alloy surfaces. Master's Thesis, Northeastern University, china, 2014 (in Chinese).
王永. 钛及钛合金表面多孔结构的构建与润湿性研究. 硕士学位论文, 东北大学, 2011.
32 Ashokkumar S, Adler-Nissen J, Møller P. Applied Surface Science, 2012, 263, 86.
[1] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[2] 刘家文, 王冲, 熊光启. 可再分散沥青粉与纳米SiO2复合制备刚性自防水混凝土的研究[J]. 材料导报, 2020, 34(8): 8090-8095.
[3] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[4] 屈伟, 范同祥. 金属/陶瓷润湿性的实验表征和理论预测研究进展[J]. 材料导报, 2019, 33(21): 3606-3612.
[5] 王辉, 崔梦冰, 闫冬冬, 陈改荣. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 555-558.
[6] 杨鸿泰, 代明江, 李洪, 林松盛, 侯慧君, 石倩, 韦春贝. Al含量对TiAlN涂层组织结构和性能的影响[J]. 材料导报, 2018, 32(20): 3573-3578.
[7] 李波, 张智豪, 刘祥, 李晓民, 吕镇峰. 基于表面理论的温拌SBS改性沥青-集料体系的粘附性*[J]. 《材料导报》期刊社, 2017, 31(4): 115-120.
[8] 吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
[9] 李海莲, 李波, 王起才, 李良英, 王永宁. 基于表面能理论的老化温拌SBS改性沥青结合料的粘附性*[J]. 《材料导报》期刊社, 2017, 31(16): 129-133.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed