Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21080171-11    https://doi.org/10.11896/cldb.21080171
  无机非金属及其复合材料 |
再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性
王家滨1,2,3,*, 侯泽宇1,3, 张凯峰4, 李恒1
1 西安工业大学建筑工程学院,西安 710021
2 西安建筑科技大学西部绿色建筑国家重点实验室,西安 710055
3 西安工业大学西安市军民两用土木工程测试技术与毁损分析重点实验室,西安 710021
4 中建西部建设北方有限公司,西安 710065
Durability of Recycled Aggregate Concrete Subjected to High Concentration Mg2+-SO42--Cl- Compound Salts
WANG Jiabin1,2,3,*, HOU Zeyu1,3, ZHANG Kaifeng4, LI Heng1
1 Civil & Architecture Engineering,Xi'an Technological University, Xi'an 710021, China
2 State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology,Xi'an 710055, China
3 Xi'an Key Laboratory of Civil Engineering Testing and Destruction Analysis on Military-Civil Dual Use Technology, Xi'an Technological University,Xi'an 710021, China
4 China West Construction North Co., Ltd., Xi'an 710065, China
下载:  全 文 ( PDF ) ( 23562KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国西北地区区域土壤及地下水中含有高浓度侵蚀性的Mg2+、SO42-及Cl-严重降低了在役混凝土结构的耐久性,阻碍了再生混凝土(RAC)在工程中应用。基于西北地区区域环境与耐久性侵蚀特点,本研究采用7.5%MgSO4-7.5%Na2SO4-5%NaCl高浓度复合盐溶液及干湿交替法,开展RAC耐久性实验。以相对动弹性模量、质量变化率、相对抗压与劈裂抗拉强度、损伤层厚度为耐久性指标,研究RAC耐久性退化规律与影响因素。采用XRD、FTIR、TG-DSC及SEM-EDX等手段,表征侵蚀RAC的微观结构,探究RAC耐久性演化过程。侵蚀初期,水镁石、硫酸钙及钙矾石等侵蚀产物填充RAC表层,降低化学侵蚀速度,RAC的耐久性呈现暂时性提升和/或相对稳定状态;侵蚀中后期,钙矾石、Friedel盐、C-S-H等分解,M-S-H、Na2SO4等无胶凝性侵蚀产物和膨胀性物理结晶盐的形成加速了RAC微观结构的破坏,RAC耐久性进入快速下降阶段。RAC的耐久性与采用的辅助胶凝材料组成(粉煤灰、矿渣、硅灰及偏高领土)有显著关系,多元胶凝体系RAC的抗侵蚀性能高于三元胶凝体系,粉煤灰-硅灰-偏高领土辅助胶凝体系RAC的抗侵蚀性能最优,粉煤灰与硅灰取代率比为1∶2的三元胶凝材料体系RAC的抗侵蚀性最差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
侯泽宇
张凯峰
李恒
关键词:  再生混凝土耐久性  高浓度复合盐侵蚀  辅助胶凝材料体系  损伤机理  耐久性退化过程    
Abstract: In Northwest China, the soil and the underground water contains high concentration corrosion ions of magnesium, sulfate and chloride, which has negative influence on the durability of in-service concrete structure and hinders the recycled aggregate concrete (RAC) application in modern structural engineering. Based on the characteristics of environment and durability corrosion factors in Northwest China, the durability experiment of RAC subjected with high concentration compound salt solution of 7.5%MgSO4-7.5%Na2SO4-5%NaCl was carried out by using drying & wetting cycles (D&W) method. For the durability indexes of the relative elastic dynamic modulus, weight change ratio, relative compressive and splitting tensile strength, and damage depth, the durability degradation law and the influence factors were researched. In addition, the durability degradation process was suggested through analyzing the mineral phases composition and microstructure of damaged RAC with XRD, FTIR, TG-DSG and SEM-EDX. Brucite, anhydrite, ettringite and Friedel's salt filled in pores of RAC what reduced the chemical corrosion rate. Correspondingly, the durability of RAC showed a temporary improvement and/or relatively stable state. Afterword, ettringite, Friedel's salt and C-S-H decomposed, and the non-gelling corrosion product of M-S-H and expansive physical salt crystallization of Na2SO4 and others formed, which damaged the microstructure of RAC, caused durability rapidly decreased. The durability degradation process was divided into three phases of false performance improvement, performance stabilization and performance deterioration. The physical and mechanical properties of damaged RAC were obviously related to the combination of supplementary cementitious materials (SCM). The ions attack resistance of RAC with multiple CMS was great higher than that of RAC with two types of SCMs. The RAC with 10% fly ash, 10% silica fume and 10% metakaolin had the best durability, while that of RAC with 10%fly ash and 20% silica fume was the worst.
Key words:  durability of recycled aggregate concrete    high concentration compound salt attack    supplementary cementitious materials systems    damage mechanism    durability degradation process
发布日期:  2022-12-09
ZTFLH:  TU528.44  
基金资助: 国家自然科学基金(51908440;51909204);西部绿色建筑国家重点实验室开放基金项目(LSKF 202216)
通讯作者:  *wangjiabin@xatu.edu.cn   
作者简介:  王家滨,西安工业大学建筑工程学院副教授。2012年硕士毕业于西安建筑科技大学材料科学与工程学院,2017年博士毕业于西安建筑科技大学土木工程学院。主要从事混凝土结构耐久性相关方面的研究,发表学术论文30余篇。
引用本文:    
王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
WANG Jiabin, HOU Zeyu, ZHANG Kaifeng, LI Heng. Durability of Recycled Aggregate Concrete Subjected to High Concentration Mg2+-SO42--Cl- Compound Salts. Materials Reports, 2022, 36(23): 21080171-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080171  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21080171
1 Xiao J Z, Li W, Ding T. Journal of Southeast University (Natural Science Edition), 2016, 46(5), 1088 (in Chinese).
肖建庄, 黎骜, 丁陶. 东南大学学报(自然科学版), 2016, 46(5),1088.
2 Cao W L, Xiao J L, Ye T P, et al.Journal of Building Structure, 2020, 41(12), 1 (in Chinese).
曹万林, 肖建庄, 叶涛萍, 等. 建筑结构学报, 2020, 41(12), 1.
3 Zega C J , Coelho D S G S, Villagran-Zaccardi Y A, et al. Construction & Building Materials, 2016, 102, 714.
4 Jeonghyun K.Construction and Building Materials, 301, 124091.
5 Wang J B, Zhang K F, Hou Z Y, et al.Chine Civil Engineering Journal, 2020, 53(11), 21 (in Chinese).
王家滨,张凯峰,侯泽宇, 等.土木工程学报, 2020, 53(11), 21.
6 Jia W L, Zhang Q, Li H. Bulletin of the Chinese Ceramic Society, 2016, 35(12), 3981 (in Chinese).
贾文亮, 张琴, 李昊. 硅酸盐通报, 2016, 35(12), 3981.
7 Mohammed F A, U. Johnson A, Mohd Z J, et al.Construction & Building Materials, 2018, 163, 482.
8 Mostofinejad D, Hosseini S M, Nosouhian F, et al. Journal of Building Engineering, 2020, 29, 101182.
9 Gao S, Gong Y Y, Ban S L, et al.Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2567(in Chinese).
高嵩, 宫尧尧, 班顺莉, 等. 硅酸盐通报, 2020, 39(8), 2567.
10 Gao S, Gong Y Y, Ban S L.Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(5), 907(in Chinese).
高嵩, 宫尧尧, 班顺莉. 沈阳建筑大学学报(自然科学版), 2021, 37(5), 907.
11 Babar A., Muhammad A. G., Ali R..Construction & Building Materials, 2021, 277, 122329.
12 Geng O, Sun Q, Li D H. Journal of Architecture and Civil Engineering, 2020, 37(6), 108(in Chinese).
耿欧, 孙倩, 李大贺. 建筑科学与工程学报, 2020, 37(6), 108.
13 Xie F, Li J P, Zhao G W, et al.Construction & Building Materials, 2021, 297, 123771.
14 Li H, Wang J B, Guo Q J, et al.Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2608(in Chinese).
李恒, 王家滨, 郭庆军, 等. 硅酸盐通报, 2020, 39(8), 2608.
15 Mehta P K.Concrete: microstructure,properties,and materials (4th edition),McGraw-Hill Education,New York,2014.
16 Wang J B, Niu D T, Song Z P.Construction & Building Materials, 2016, 123, 346.
17 Xu Y. Cement & Concrete Research, 1997, 27, 1841.
18 Geng J, Easterbrook D, Li L Y, et al.Cement & Concrete Research, 2015, 68, 211.
19 Brown P W, Badger S. Cement & Concrete Research, 2000, 30(10), 1535.
20 Lee S T.Waste Management, 2009, 29(8), 2385.
21 Yan N R, Yue W H. The handbook of inorganic metalloid materials atlas, Wuhan University of Technology Press, 2000 (in Chinese).
杨南如, 岳文海. 无机非金属材料图谱手册, 武汉工业大学出版社, 2000.
22 Bernard E,Lothenbach B,Rentsch D,et al.Physics & Chemistry of the Earth Parts A /B /C,2017, 99, 142.
23 Deng D H, Xiao J, Yuan Q, et al.Journal of Building Materials, 2005, 8(4), 400 (in Chinese).
邓德华,肖佳,元强,等. 建筑材料学报, 2005, 8(4), 400.
24 Liu Z, Deng D H, Schutter G D, et al.Construction & Building Materials, 2012, 28(1), 230.
25 Cao F B, Wei Z Y, Wang C X, et al. Industrial Construction, 2021, 51(4), 167(in Chinese).
曹芙波, 魏子洋, 王晨霞, 等. 工业建筑, 2021, 51(4), 167.
26 Gong Y Y, Li N, Zhang L, et al.China Concrete and Cement Products, 2021(2), 91(in Chinese).
宫尧尧, 李楠, 张蕾, 等. 混凝土与水泥制品, 2021(2), 91.
27 Yue G B, Ma Z M, Liu M, et al. Construction & Building Materials, 245, 118419.
28 Zhu X Y, Sun G Q.China Concrete and Cement Products, 2019(5), 92(in Chinese).
朱晓云, 孙国卿. 混凝土与水泥制品, 2019(5), 92.
29 Zhang H R, Ji T, Liu H.Construction & Building Materials, 2020, 248, 118675.
[1] 罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
[2] 孙科科, 彭小芹, 冉鹏, 王淑萍, 曾路, 李静静, 王双. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100.
[3] 马衍轩, 于霞, 徐亚茜, 李梦瑶, 赵飞, 张鹏, 彭帅. 智能纤维混凝土的力场损伤响应、监测与修复研究进展[J]. 材料导报, 2021, 35(19): 19081-19090.
[4] 张广泰, 王明阳, 耿天娇, 张文梅, 章金鹏. 高温-荷载耦合作用下废旧叠层轮胎隔震垫劣化机理分析[J]. 材料导报, 2020, 34(20): 20187-20192.
[5] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed