Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24095-24100    https://doi.org/10.11896/cldb.20090292
  无机非金属及其复合材料 |
地聚合物混凝土抗冻性影响因素
孙科科, 彭小芹, 冉鹏, 王淑萍, 曾路, 李静静, 王双
重庆大学材料科学与工程学院,重庆 400044
The Influence Factor of the Anti-freeze of Geopolymer Concrete
SUN Keke, PENG Xiaoqin, RAN Peng, WANG Shuping, ZENG Lu, LI Jingjing, WANG Shuang
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 4392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调整地聚合物的氧化物SiO2/Al2O3、Na2O/Al2O3和H2O/Na2O的物质的量比,利用碱激发偏高岭土制备不同强度等级的地聚合物混凝土。同时,用相同强度等级的普通硅酸盐水泥(OPC)混凝土作对比,评价地聚合物混凝土的抗冻性。结果表明:随着n(Na2O)/n(Al2O3)和n(H2O)/n(Na2O)增大,地聚合物混凝土的抗冻性降低;当n(SiO2)/n(Al2O3)=3.3时,地聚合物混凝土的抗冻性最佳,冻融循环次数可达200。当地聚合物混凝土达到冻融极限时,相对动弹性模量损失较小,说明其冻融破坏的主要形式是表面脱落,而其内部结构破坏速率较OPC混凝土更慢。当抗压强度为30~50 MPa时,地聚合物混凝土抗冻性略优于OPC混凝土的抗冻性;但抗压强度在50~70 MPa时,OPC混凝土抗冻性远优于地聚合物混凝土抗冻性。此外,地聚合物混凝土具有较高水饱和系数,值均在0.85~0.95,说明地聚合物混凝土孔结构以开口孔为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙科科
彭小芹
冉鹏
王淑萍
曾路
李静静
王双
关键词:  地聚合物混凝土  水饱和系数  抗冻性  损伤机理    
Abstract: Geopolymer concretes with different compressive strength were prepared by alkali-activated metakaolin by adjusting the molar ratio of geopolymer oxides SiO2/Al2O3, Na2O/Al2O3 and H2O/Na2O. The freeze-thaw cycles of geopolymer concrete and ordinary portland cement (OPC) concrete were tested and the anti-freeze property of those concrete were compared. Results showed that the anti-free-zing of geopolymer concrete decreased with the increase of the n(Na2O)/n(Al2O3) and n(H2O)/n(Na2O). The optimal anti-freezing of geopolymer concrete was achieved when the n(SiO2)/n(Al2O3)=3.3 was used and the freeze-thaw number could reach to 200 cycles. There was a slightly decrease in relative dynamic elasticity modulus when freeze-thaw damage of geopolymer concrete reached to the failure limit, illustrated that the main failure form of geopolymer concrete under the freeze-thaw cycles was the surface scale, but the damage ratio of inner structure was lower than that of the OPC concrete. For concrete with compressive strength between 30 MPa and 50 MPa, the anti-freezing of geopolymer concrete was slightly better than that of the OPC concrete. However, for concrete with compressive strength between 50 MPa and 70 MPa, the anti-freezing of geopolymer concrete was much lower than that of the OPC concrete. The coefficient of water saturation of geopolymer concrete ranged from 0.85 to 0.95, indicating that the majority pore was the open pore.
Key words:  geopolymer concrete    coefficient of water saturation    anti-freezing    damage mechanism
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TU52  
基金资助: 国家自然科学基金资助项目(51678093);中央高校基础科研专项资金 (2019CDJGFCL002);重庆市研究生科研创新项目(CYB19004)
通讯作者:  pxq01@cqu.edu.cn   
作者简介:  孙科科,重庆大学材料科学与工程学院博士研究生,主要从事碱激发材料的耐久性研究。彭小芹,博士,毕业于重庆大学材料科学与工程学院,现任重庆大学教授,博导,主要从事建筑材料的耐久性及工业废渣利用的研究。主持和主研承担和完成国家自然科学基金、省部级及横向科研项目20余项。在国内外学术刊物发表学术论文80余篇,发明专利16项。
引用本文:    
孙科科, 彭小芹, 冉鹏, 王淑萍, 曾路, 李静静, 王双. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100.
SUN Keke, PENG Xiaoqin, RAN Peng, WANG Shuping, ZENG Lu, LI Jingjing, WANG Shuang. The Influence Factor of the Anti-freeze of Geopolymer Concrete. Materials Reports, 2021, 35(24): 24095-24100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090292  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24095
1 Bai C, Colombo P. Ceramics International, 2018, 14(44),16103.
2 Singh B, Ishwarya G, Gupta M, et al.Construction and Building Mate-rials, 2015, 85, 78.
3 Fowler D W. Cement and Concrete Composites, 1999, 21(5-6),449.
4 Zhang S W, Wan X M, Liu G B, et al. Concrete, 2018(1),105(in Chinese).
张淑文, 万小梅, 刘桂宾,等.混凝土, 2018(1),105.
5 Slavik R, Bednarik V, Vondruska M, et al.Journal of Materials Processing Technology, 2008, 200(1-3), 265.
6 Zhang Y S, Sun Wei, Sha J F, et al. Journal of Building Materials, 2003, 6(3),237(in Chinese).
张云升, 孙伟, 沙建芳,等.建筑材料学报, 2003, 6(3),237.
7 Zuhua Z, Xiao Y, Huajun Z, et al. Applied Clay Science,2009,43,218.
8 Li S, Peng X Q, Gou J, et al. Materials Review B:Research Papers, 2018, 32(10),138(in Chinese).
李三, 彭小芹, 苟菁,等.材料导报:研究篇, 2018, 32(10),138.
9 Davidovits J.Geopolymer,chemistry and applications.Institute Géopolymère, France, 2008.
10 Zhou W, Yan C, Duan P, et al. Materials and Design, 2016, 95, 63.
11 Karuppuchamy K, Ananthkumar M, Raghavapriya S M.IOP Conference Series:Materials Science and Engineering, 2018, 310,012039.
12 Li K, Lu D Y, Li M H, et al. Journal of the Chinese Ceramic Society, 2016, 44(2),226(in Chinese).
李款, 卢都友, 李孟浩,等. 硅酸盐学报, 2016, 44(2),226.
13 Molero M, Aparicio S, et al.NDT & E International, 2012, 52, 86.
14 Cao D F, Fu L Z, Yang Z W, et al. Journal of Building Materials, 2013, 16(1),17(in Chinese).
曹大富, 富立志, 杨忠伟,等.建筑材料学报, 2013, 16(1),17.
15 Chen J, Lu D Y, Li K, et al. Journal of the Chinese Ceramic Society, 2017, 45(08),85(in Chinese).
陈捷, 卢都友, 李款,等.硅酸盐学报, 2017, 45(08),85.
16 Yang Z H, Shi M L. Journal of Building Materials, 1999(4),365(in Chinese).
杨正宏, 史美伦.建筑材料学报, 1999(4),365.
17 Pigeon M, Marchand J, Pleau R. Construction and Building Materials, 1996, 10(5),339.
18 Sun Z, Scherer G W.Cement and Concrete Research, 2010, 40(2), 260.
19 Chatterji S.Cement and Concrete Composites, 2004, 26(1), 75.
20 Powers T C.Proceedings of the American Society of Civil Engineers. 1955,81,742.
21 Scherer G W. Cement and Concrete Research, 1999, 29(8),1347.
22 Fagerlund G. Matériauxet Construction, 1977, 10(4),231.
23 Dash J G, Fu H, et al. Reports on Progress in Physics, 1995, 58(1),115.
24 Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes. Taylor and Francis, UK, 2006.
25 Steins P, Poulesquen A, Frizon F, et al. Journal of Applied Crystallography, 2014, 47(1), 316.
26 Gharzouni A, Joussein E, et al. Journal of Non-crystalline Solids, 2015, 410,127.
27 Davidovits J. Journal of Thermal Analysis and Calorimetry,1991,37(8),1633.
[1] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[2] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[3] 陈柯, 孙芬, 梁爽, 张海涛. 基于振动搅拌技术高寒地区基层抗冻性与抗裂性试验研究[J]. 材料导报, 2021, 35(Z1): 291-296.
[4] 朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
[5] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[6] 马衍轩, 于霞, 徐亚茜, 李梦瑶, 赵飞, 张鹏, 彭帅. 智能纤维混凝土的力场损伤响应、监测与修复研究进展[J]. 材料导报, 2021, 35(19): 19081-19090.
[7] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[8] 戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
[9] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[10] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
[J]. 材料导报, 2020, 34(7): 7099-7106.
[11] 张广泰, 王明阳, 耿天娇, 张文梅, 章金鹏. 高温-荷载耦合作用下废旧叠层轮胎隔震垫劣化机理分析[J]. 材料导报, 2020, 34(20): 20187-20192.
[12] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[13] 曾路, 何牟, 张明华, 胡婷婷, 王淑萍, 彭小芹. 地聚物基透水混凝土的制备与性能[J]. 材料导报, 2019, 33(24): 4086-4091.
[14] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[15] 南雪丽, 王超杰, 刘金欣, 韩博, 杨蓝蓝. 冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 177-181.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed