Fundamental Problems and Applications of Recycled Fine Powder Derived from Waste Concrete
XIAO Jianzhuang1,2,3,4,*, YE Taohua1, SUI Tongbo5, POON Chi Sun6
1 College of Civil Engineering, Tongji University, Shanghai 200092, China 2 State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China 3 Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, China 4 Key Laboratory of Performance Evolution and Control for Engineering Structures, Ministry of Education, Tongji University, Shanghai 200092, China 5 Sinoma International Engineering Co., Ltd., Beijing 100102, China 6 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Abstract: Resourcing of waste concrete and its application as recycled aggregates have made significant progress. However, research on recycled fine powder derived from waste concrete is still limited. Therefore, this paper focuses on the preparation, characterization, and modification of recycled fine powder, clarifies the mechanisms for its fundamental problems such as high component discreteness (i.e., the number of mineral phase species) and low activity index, and proposes a novel solution, that is, the introduction of particle shaping and strong magnetic separation technologies into the preparation process of recycled fine powder, followed by carbonation modification. It is expected that the above-mentioned problems can be addressed by taking carbonated recycled fine powder with ultra-high paste content as the outlet. Furthermore, low-carbon application scenarios of recycled fine powder are discussed, including Portland-recycled fine powder cement, 3D-printed recycled mortar, and fully recycled concrete. Further research and value-added use of recycled fine powder are known to be significant for the improvement in resourcing ratio of waste concrete as well as for the green and low-carbon development in building industry.
通讯作者:
*肖建庄,同济大学土木工程学院教授、博士研究生导师,国家杰出青年科学基金获得者,德国洪堡学者,国家重点研发计划首席科学家。主编国内第一本再生混凝土技术规程,获国家科技进步奖二等奖;出版学术专著5本,发表高水平学术论文400余篇,再生混凝土领域的论文成果量列全球首位(Scopus数据库),Web of Science的h指数56;连续9年入选Elsevier中国高被引学者榜单;连续3年入选全球前2%顶尖科学家榜单;兼任国际RILEM 再生混凝土结构行为与创新技术委员会 TC273-RAC 主席、中国土木工程学会混凝土及预应力混凝土分会常务理事。主要研究领域为再生混凝土材料与结构。jzx@tongji.edu.cn
引用本文:
肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
XIAO Jianzhuang, YE Taohua, SUI Tongbo, POON Chi Sun. Fundamental Problems and Applications of Recycled Fine Powder Derived from Waste Concrete. Materials Reports, 2023, 37(10): 22120116-10.
1 IEA. Technology roadmap low-carbon transition in the cement industry, Paris, France, 2018. 2 Baki V A, Ke X Y, Heath A, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106962. 3 Luo Y, Wu Y H, Ma S H, et al. Environmental Science and Pollution Research, DOI:10.1007/s11356-020-08864-4. 4 Shi J G, Xu Y Z. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2006.03.011. 5 Xiao J Z, Xia B, Xiao X W, et al. Chinese Science Bulletin, DOI:10.1360/TB-2022-0055 (in Chinese). 肖建庄, 夏冰, 肖绪文, 等. 科学通报, DOI:10.1360/TB-2022-0055. 6 Xiao J Z, Zhang H H, Tang Y X, et al. Chinese Science Bulletin, DOI:10.1360/TB-2022-0521 (in Chinese). 肖建庄, 张航华, 唐宇翔, 等. 科学通报, DOI:10.1360/TB-2022-0521. 7 Xiao J Z, Poon C S, Zhao Y X, et al. Magazine of Concrete Research, DOI:10.1680/jmacr. 21. 00285. 8 Xiao J Z, Poon C S, Wang Y Y, et al. Magazine of Concrete Research, DOI:10.1680/jmacr.21.00253. 9 Xiao J Z. Recycled aggregate concrete structures, Springer, Germany, 2018. 10 Tang Q, Ma Z M, Wu H X, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2020.103807. 11 Xiao J Z, Xiao Y, Liu Y, et al. Structural Concrete, DOI:10.1002/suco.201900577. 12 Xiao J, Ma Z. Low carbon stabilization and solidification of hazardous wastes, Elsevier, Netherlands, 2022, pp.291. 13 Kaliyavaradhan S K, Ling T C, Mo K H. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2020.122358. 14 Ho H J, Iizuka A, Shibaya E. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2020.124785. 15 Xu L, Wang J J, Li K F, et al. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2022.106432. 16 Li L K, Liu Q, Huang T Y, et al. Separation and Purification Technology, DOI:10.1016/j.seppur.2022.121512. 17 Duan Z H, Poon C S. Materials & Design, DOI:10.1016/j.matdes.2014.01.044. 18 De-Juan M S, Gutierrez P A. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2008.04.012. 19 Kosmatka S, Wilson M. Design and control of concrete mixtures, Portland Cement Association, USA, 2011. 20 Liu X Y, Liu L, Lyu K, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.104175. 21 Duan Z H, Hou S D, Xiao J Z, et al. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2019.119865. 22 Song I H, Ryou J S. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2014.08.041. 23 Kim H S, Kim J M, Kim B. Journal of Material Cycles and Waste Ma-nagement, DOI:10.1007/s10163-017-0639-8. 24 Quattrone M, Angulo S C, John V M. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2014.06.003. 25 Pepe M, Toledo R D, Koenders E A B, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2014.06.084. 26 Carrico A, Bogas J A, Hu S, et al. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2021.127375. 27 Mosaberpanah M A, Eren O. Advances in Concrete Construction, DOI:10.12989/acc.2017.5.5.481. 28 Lothenbach B, Zajac M. Cement and Concrete Research, DOI:10.1016/j.cemconres.2019.105779. 29 Lothenbach B, Le-Saout G, Gallucci E, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2008.01.002. 30 Matschei T, Lothenbach B, Glasser F P. Cement and Concrete Research, DOI:10.1016/j.cemconres.2006.10.010. 31 Georget F, Lothenbach B, Wilson W, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2021.106692. 32 Bernard E, Zucha W J, Lothenbach B, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2021.106674. 33 Holmes N, Tyrer M, West R, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2021.126129. 34 BS EN 197-1. Cement:Composition, specification and conformity criteria for common cements, European Committee for Standardization, UK, 2011. 35 Macdowell J F. MRS Online Proceedings Library, DOI:10.1557/PROC-179-159. 36 Sun J F, Shen X D, Tan G, et al. Journal of Thermal Analysis and Calorimetry, DOI:10.1007/s10973-018-7578-z. 37 Dilnesa B Z, Lothenbach B, Renaudin G, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2014.02.001. 38 Okoronkwo M U, Glasser F P. Cement and Concrete Research, DOI:10.1016/j.cemconres.2016.01.013. 39 Linderoth O, Wadso L, Jansen D. Cement and Concrete Research, DOI:10.1016/j.cemconres.2020.106344. 40 Lothenbach B, Matshei T, Moschner G, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2007.08.017. 41 Fernandez A, Lothenbach B, Alonso M C, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.02.007. 42 Abdel-Rahman R O, Ojovan M I. Sustainability of life cycle management for nuclear cementation-based technologies, Elsevier, Netherlands, 2021, pp.125. 43 Damidot D, Glasser F P. Cement and Concrete Research, DOI:10.1016/0008-8846(94)00108-B. 44 Zunino F, Scrivener K. Cement and Concrete Research, 2022, DOI:10.1016/j.cemconres.2021.106693. 45 Juhasz A Z, Opoczky L. Mechanical Activation of minerals by grinding, Ellis Horwood Ltd, USA, 1990. 46 Balaz P. International Journal of Mineral Processing, DOI:10.1016/S0301-7516(03)00109-1. 47 Meng T, Hong Y P, Ying K J, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2021.104065. 48 Mucsi G, Papne N H, Ulsen C, et al. ACS Sustainable Chemistry & Engineering, DOI:10.1021/acssuschemeng.0c05838. 49 Balaz P. Mechanochemistry in nanoscience and minerals engineering, Springer, Germany, 2008. 50 Wang J J, Mu M L, Liu Y L. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.09.181. 51 Zhang L L, Ji Y S, Huang G D, et al. Construction and Building Mate-rials, DOI:10.1016/j.conbuildmat.2017.12.232. 52 Serpell R, Lopez M. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2015.08.003. 53 Carrico A, Bogas J A, Guedes M. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.118873. 54 Serpell R, Zunino F. Cement and Concrete Research, DOI:10.1016/j.cemconres.2017.08.001. 55 Hall C, Barnes P, Billimore A D, et al. Journal of the Chemical Society, Faraday Transactions, DOI:10.1039/FT9969202125. 56 Rackley S A. Carbon capture and storage, Butterworth-Heinemann, UK 2017. 57 Meller N, Kyritsis K, Hall C. Journal of Solid State Chemistry, DOI:10.1016/j.jssc.2009.07.029. 58 Rivas-Mercury J M, Pena P, De-Aza A H, et al. Journal of the European Ceramic Society, DOI:10.1016/j.jeurceramsoc.2007.12. 038. 59 Song H, Jeong Y, Bae S, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.03.001. 60 Vagvolgyi V, Palmer S J, Kristof J, et al. Journal of Colloid and Interface Science, DOI:10.1016/j.jcis.2007.10.033 61 Valchevatraykova M L, Davidova N P, Weiss A H. Journal of Materials Science, DOI:10.1007/BF00367577. 62 Koehler A, Neubauer J, Goetz-Neunhoeffer F. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106972. 63 Zhu B Q, Song Y N, Li X C, et al. Materials Chemistry and Physics, DOI:10.1016/j.matchemphys.2015.01.060. 64 Xi F M, Davis S J, Ciais P, et al. Nature Geoscience, DOI:10.1038/ngeo2840. 65 Shen P L, Zhang Y Y, Jiang Y, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106733. 66 Shen P L, Sun Y J, Liu S H, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2021.106526. 67 Liu X, Feng P, Cai Y X, et al. Chemical Engineering Journal, DOI:10.1016/j.cej.2021.134243. 68 Zhu C H, Fang Y H, Wei H. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.10.113. 69 Wu Y Q, Mehdizadeh H, Mo K H, et al. Journal of Building Enginee-ring, DOI:10.1016/j.jobe.2022.104526. 70 Fang X L, Xuan D X, Zhan B J, et al. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2020.125192. 71 Mehdizadeh H, Mo K H, Ling T C. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2022.106695. 72 Shen P L, Lu J X, Zhang Y Y, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106891. 73 Ouyang X W, Wang L Q, Xu S D, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2020.103809. 74 Hargis C W, Lothenbach B, Muller C J, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2017.03.003. 75 Zhang Y, Copuroglu O. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2022.104642. 76 Zhang Y, Liang M, Gan Y, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2022.104765. 77 Lu B, Shi C J, Zhang J K, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.07.159. 78 Xuan D X, Shui Z H. Fire and Materials, DOI:10.1002/fam.1067. 79 Li Z, Bian Y, Zhao J, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.105326. 80 Chen X, Li Y, Zhu Z Y, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.104511. 81 Chen X, Li Y, Bai H L, et al. Journal of Renewable Materials, DOI:10.32604/jrm.2021.015394. 82 Amin A F M S, Hasnat A, Khan A H, et al. Journal of Materials in Civil Engineering, DOI:10.1061/(ASCE)MT.1943-5533.0001472. 83 Yu K Q, Zhu W J, Ding Y, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2019.105813. 84 Likes L, Markandeya A, Haider M M, et al. Journal of Cleaner Production, 2022, DOI:10.1016/j.jclepro.2022.132651. 85 Zhu P, Mao X Q, Qu W J. Magazine of Concrete Research, DOI:10.1680/jmacr.18.00513. 86 Gao Y Q, Cui X Z, Lu N, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2021.103574. 87 Mao X Q, Qu W J, Zhu P, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.119049. 88 Lee H K, Lee K M, Kim B G. Magazine of Concrete Research, DOI:10.1680/macr.2003.55.6.507. 89 Nezerka V, Havlasek P, Trejbal J. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.118673. 90 Roussel N. Cement and Concrete Research, DOI:10.1016/j.cemconres.2018.04.005. 91 Panda B, Unluer C, Tan M J. Cement and Concrete Composites, 2018, DOI:10.1016/j.cemconcomp.2018.10.002. 92 Hou S D, Xiao J Z, Duan Z H, et al. Construction and Building Mate-rials, DOI:10.1016/j.conbuildmat.2021.125186. 93 Zhang H H, Xiao J Z, Duan Z H, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2022.128007. 94 Qian H, Hua S, Yue H, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.105236. 95 Zhang Y, Luo W, Wang J, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.03.078. 96 Xiao J Z, Ma X W, Liu Q, et al. Journal of Architecture and Civil Engineering, DOI:10.19815/j.jace.2020.11036 (in Chinese). 肖建庄, 马旭伟, 刘琼, 等. 建筑科学与工程学报, DOI:10.19815/j.jace.2020.11036. 97 Tang Y X, Xiao J Z, Zhang H H, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2022.126546. 98 Zhang H H, Xiao J Z, Tang Y X, et al. Cement and Concrete Compo-sites, DOI:10.1016/j.cemconcomp.2022.104527. 99 Xiao J Z, Lv Z Y, Duan Z H, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.104282.