Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21030187-10    https://doi.org/10.11896/cldb.21030187
  无机非金属及其复合材料 |
钠离子电池负极材料锐钛矿型二氧化钛的研究进展
赵宏顺1,2,3, 戚燕俐1,2,3, 任玉荣1,2,3,*
1 常州大学材料科学与工程学院,江苏 常州 213164
2 江苏省新能源汽车动力电池制造技术工程研究中心,江苏 常州 213164
3 常州市动力电池智能制造高技术重点实验室,江苏 常州 213164
Research Progress on Anatase Titanium Dioxide as Anode Material for Sodium-ion Batteries
ZHAO Hongshun1,2,3, QI Yanli1,2,3, REN Yurong1,2,3,*
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou 213164, Jiangsu, China
3 Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou 213164, Jiangsu, China
下载:  全 文 ( PDF ) ( 12134KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相较于锂离子电池,钠离子电池具有价格低廉、原料丰富、循环稳定性及倍率性能较好等优点,因此,随着低成本储能技术的需求日益增长,越来越多的研究者加入到钠离子电池基础研究和工程化探索的工作中。在钠离子电池体系中,负极材料在很大程度上影响着电池的能量密度、循环性能及安全性等。另外,在种类繁多的负极材料中,锐钛矿型二氧化钛(TiO2)因自放电低、安全性高、循环寿命长、环境友好以及钠离子脱嵌电位相对较高等优点,逐渐成为钠离子电池负极材料的研究热点。然而,TiO2属于半导体,离子扩散速率小和电子电导率低,严重制约着其倍率性能和循环性能,限制了其发展空间。因此,需对锐钛矿型TiO2进行改性以提升其电导率。本文系统综述了微观结构调控、缺陷(氧空位和杂原子掺杂)以及与导电基体复合等改性方法对锐钛矿型TiO2基负极材料导电性和储钠性能的影响,并对锐钛矿型TiO2作为钠离子电池负极材料在未来的研究与应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵宏顺
戚燕俐
任玉荣
关键词:  钠离子电池  负极材料  锐钛矿型二氧化钛  改性方法    
Abstract: Compared with lithium-ion batteries, sodium-ion batteries have the advantages of low cost, abundant raw materials, good cycle stability and rate performance. Hence, a growing number of researchers have joined the basic research and engineering exploration of sodium-ion batteries because of the increasing demand for low-cost energy storage technologies. With regard to the sodium-ion battery system, the anode materials significantly influence the energy density of the battery, as well as the cycling performance and safety. Recently, anatase titanium dioxide (TiO2), among many anode materials, has gradually become a research hotspot for sodium-ion battery on account of its low self-discharge, high safety, long cycle life, environmental friendliness and relatively high sodium-ion deintercalation potential. Yet, since TiO2 is a semiconductor material, the sluggish ionic diffusivity and poor electronic conductivity severely hinder the performance under high rates and long-term cycling conditions. Therefore, anatase TiO2 needs to be modified to improve its electrical conductivity. This study systematically reviews the effects of different modification methods, such as microstructure adjustment, defects (oxygen vacancy and heteroatom doping) and compounding with conductive matrix. In addition, the research and applications of anatase TiO2 as sodium-ion anode in the future are also prospected.
Key words:  sodium-ion battery    anode material    anatase titanium dioxide    modification method
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O646  
  TM912  
基金资助: 国家自然科学基金(91961126;22078029);江苏高校优势学科建设工程资助项目;江苏省高校青蓝工程科技创新团队项目;江苏省研究生科研与实践创新计划项目(SJCX21_1180)
通讯作者:  *ryrchem@cczu.edu.cn,任玉荣,常州大学材料科学与工程学院教授、博士研究生导师。1998年7月本科毕业于吉林师范大学。2010年7月在中国科学院成都有机化学研究所获得博士学位。2015—2016年在加州大学洛杉矶分校作访问学者。主要研究方向包括新型炭材料和新型纳米能源材料与器件研究。发表学术论文60余篇,公开或授权专利20余项。   
作者简介:  赵宏顺,2019年6月毕业于常州大学,获得工学学士学位。现为常州大学材料科学与工程学院硕士研究生,师从任玉荣教授。目前主要研究课题为二氧化钛基储钠负极材料。
引用本文:    
赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
ZHAO Hongshun, QI Yanli, REN Yurong. Research Progress on Anatase Titanium Dioxide as Anode Material for Sodium-ion Batteries. Materials Reports, 2023, 37(3): 21030187-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030187  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21030187
1 Ren J C, Huang Y L, Zhu H, et al. Carbon Energy, 2020, 2 (2), 176.
2 Goodenough J B, Park K S. Journal of the American Chemical Society, 2013, 135(4), 1167.
3 Hirsh H S, Li Y X, Tan D H S, et al. Advanced Energy Materials, 2020, 10(32), 2001274.
4 Wang L P, Yu L H, Wang X, et al. Journal of Materials Chemistry A, 2015, 3(18), 9353.
5 Chen Z H, Belharouak I, Sun Y K, et al. Advanced Functional Mate-rials, 2013, 23(8), 959.
6 Cao Y L. Energy Storage Science and Technology, 2020, 9(3), 757(in Chinese).
曹余良. 储能科学与技术, 2020, 9(3), 757.
7 Nie S, Liu L, Liu J F, et al. Nano-micro Letters, 2018, 10(4), 71.
8 Liang K, Ren Y R, Tang Y G, et al. Materials Reports A:Review Papers, 2020, 34(9), 09042(in Chinese).
梁康, 任玉荣, 唐友根, 等. 材料导报: 综述篇, 2020, 34(9), 09042.
9 Zhao H S, Qi Y L, Liang K, et al. ACS Applied Materials & Interfaces, 2021, 13(51), 61555.
10 Deng J Q, Luo W B, Chou S L, et al. Advanced Energy Materials, 2018, 8(4), 1701428
11 Hou B H, Wang Y Y, Ning Q L, et al. Advanced Materials, 2019, 31(40), 1903125.
12 Sun Y, Shi P C, Chen J J, et al. Journal of Energy Chemistry, 2020, 2(2), 100031.
13 Wang E H, Chen M Z, Guo X D, et al. Small Methods, 2019, 4(6), 1900163.
14 Liu D S, Liu D H, Hou B H, et al. Electrochimica Acta, 2018, 264, 292.
15 Huang S Z, Li Y, Chen S, et al. Energy Storage Materials, 2020, 32, 151.
16 Wang T S, Legut D, Fan Y C, et al. Nano Letters, 2020, 20(8), 6199.
17 Tian J W, Li J, Zhang Y X, et al. Journal of Materials Chemistry A, 2019, 7(37), 21404.
18 Fang Y, Yu X Y, Lou X W D. Advanced Materials, 2018, 30(21), 1706668.
19 Wu Y, Liu Z, Zhong X W, et al. Small, 2018, 14(12), 1703472.
20 Wan F, Wu X L, Guo J Z, et al. Nano Energy, 2015, 13, 450.
21 Zhao H S. Multifunctionalization of titanium dioxide and its pseudocapacitive sodium storage behavior. Master's Thesis, Changzhou University, China, 2022(in Chinese).
赵宏顺. 二氧化钛的多重功能化及其赝电容储钠行为研究. 硕士学位论文, 常州大学, 2022.
22 Cao Y, Ye Q, Wang F F, et al. Advanced Functional Materials, 2020, 30, 2003733.
23 Wang C, Zhang J S, Wang X F, et al. Advanced Functional Materials, 2020, 30, 2002629.
24 Xia Q B, Liang Y R, Lin Z H, et al. Advanced Energy Materials, 2020, 10, 2001033.
25 Lou S F, Zhao Y, Wang J J, et al. Small, 2019, 15(52), 1904740.
26 Guo S H, Yi J, Sun Y, et al. Energy & Environmental Science, 2016, 9(10), 2978.
27 Zhao H S, Qi Y L, Liang K, et al. Rare Metals, 2022, 41, 1284.
28 Xu Y, Lotfabad E M, Wang H L, et al. Chemical Communications, 2013, 49(79), 8973.
29 Yan D, Pan L K. Inorganic Chemistry Frontiers, 2016, 3(4), 464.
30 Oh S M, Hwang J Y, Yoon C S, et al. ACS Applied Materials & Interfaces, 2014, 6(14), 11295.
31 Kim K T, Ali G, Chung K Y, et al. Nano Letters, 2014, 14(2), 416.
32 Wu L M, Bresser D, Buchholz D, et al. Advanced Energy Materials, 2015, 5(2), 1401142.
33 Chen C C, Fu L, Maier J. Nature, 2016, 536(7615), 159.
34 Maier J. Journal of Power Sources, 2007, 174(2), 569.
35 Tahir M N, Oschmann B, Buchholz D, et al. Advanced Energy Materials, 2016, 6(4), 1501489.
36 Chen J, Ding Z, Wang C, et al. ACS Applied Materials & Interfaces, 2016, 8(14), 9142.
37 Chen B, Meng Y H, Xie F X, et al. Advanced Materials, 2018, 30(46), 1804116.
38 Peng Y T, Le Z Y, Wen M C, et al. Nano Energy, 2017, 35, 44.
39 He H N, Gan Q M, Wang H Y, et al. Nano Energy, 2018, 44, 217.
40 Li B S, Anwer S, Huang X H, et al. Journal of Energy Chemistry, 2021, 55, 202.
41 Zhang D Y, Liu L M, Zhang Y, et al. Nanotechnology, 2019, 30(23), 235401.
42 Su Y, Cao S Z, Zhao B, et al. Chemistry Select, 2020, 5(13), 3820.
43 Guan B Y, Yu L, Li J, et al. Science Advances, 2016, 2, 1501554.
44 Liu Z W, Zhang W F, Zhou Z W, et al. ACS Applied Energy Materials, 2020, 3(4), 3619.
45 Guan D D, Yu Q, Xu C, et al. Nano Research, 2017, 10(12), 4351.
46 Maça R R, Cíntora Juárez D, Castillo Rodríguez M, et al. Chemical Engineering Journal, 2020, 391, 123598.
47 Ma L, Gao X, Zhang W J, et al. Nano Energy, 2018, 53, 91.
48 Han X G, Kuang Q, Jin M S, et al. Journal of the American Chemical Society, 2009, 131, 3152.
49 Wu H B, Lou X W, Hng H H. Chemistry-A European Journal, 2012, 18(11), 3132.
50 Wang Y, Li N, Hou C X, et al. Ceramics International, 2020, 46(7), 9119.
51 Lin D M, Li K K, Wang Q, et al. Journal of Materials Chemistry A, 2019, 7(33), 19297.
52 Liu Y, Zhao F P, Li J T, et al. Journal of Materials Chemistry A, 2017, 5(37), 200053.
53 Liu F S, Sun X X, Liu Y T, et al. Applied Surface Science, 2019, 473, 873.
54 Zhu Y E, Yang L P, Sheng J, et al. Advanced Energy Materials, 2017, 7(22), 1701222.
55 Liu S N, Luo Z G, Tian G Y, et al. Journal of Power Sources, 2017, 363, 284.
56 Zhang Y, Huang Y Y, Srot V, et al. Nano-Micro Letters, 2020, 12(1), 165.
57 Diao Z D, Zhao D M, Lv C X, et al. Journal of Energy Chemistry, 2019, 38, 153.
58 Chen H, Liu H, Guo Y, et al. Journal of Alloys and Compounds, 2018, 731, 844.
59 Zhang X J, Wang M, Zhu G, et al. Ceramics International, 2017, 43(2), 2398.
60 Xu H, Zhong W, Chen Q W, et al. Journal of Materials Science, Mate-rials in Electronics, 2019, 30(7), 6395.
61 Wang Q, He H N, Luan J Y, et al. Electrochimica Acta, 2019, 309, 242.
62 Ni Q, Dong R Q, Bai Y, et al. Energy Storage Materials, 2020, 25, 903.
63 Bai Y L, Xarapatgvl R, Wu X Y, et al. Nanoscale, 2019, 11(38), 17860.
64 Lee G H, Kang J K. Advanced Science, 2020, 7(6), 1902986.
65 Gan Q, He H N, Zhu Y H, et al. ACS Nano, 2019, 13(8), 9247.
66 Zhang W F, Luo N J, Huang S P, et al. ACS Applied Energy Materials, 2019, 2(5), 3791.
67 Hwang J Y, Myung S T, Lee J H, et al. Nano Energy, 2015, 16, 218.
68 Wang R, Tang C, Zhang M, et al. Materials Letters, 2019, 253, 349.
69 Hong Z S, Kang M L, Chen X H, et al. ACS Applied Materials & Interfaces, 2017, 9(37), 32071.
70 Yan D, Yu C, Zhang X J, et al. Electrochimica Acta, 2017, 254, 130.
71 Wu Y, Wei Z X, Xu R, et al. Nano Research, 2018, 12(9), 2211.
72 Nong S Y, Dong W J, Yin J W, et al. Journal of the American Chemical Society, 2018, 140(17), 5719.
73 Kim K T, Ali G, Chung K Y, et al. Nano Letters, 2014, 14(2), 416.
74 Devina W, Nam D, Hwang J, et al. Electrochimica Acta, 2019, 321, 134639.
75 Ge Y Q, Jiang H, Zhu J D, et al. Electrochimica Acta, 2015, 157, 142.
76 Zhang R F, Wang Y K, Zhou H, et al. Nanotechnology, 2018, 29(22), 225401.
77 Le Z Y, Liu F, Nie P, et al. ACS Nano, 2017, 11(3), 2952.
78 Xu G L, Xiao L S, Sheng T, et al. Nano Letters, 2018, 18(1), 336.
79 Zhao B, Liu Q Q, Wei G J, et al. Chemical Engineering Journal, 2019, 378, 122206.
80 Fu Y Q, Wei Q L, Wang X Y, et al. Journal of Materials Chemistry A, 2015, 3(26), 13807.
81 Zhao B, Liu Q Q, Chen Y J, et al. Advanced Functional Materials, 2020, 30, 2002019.
82 Yang X, Wang C, Yang Y C, et al. Journal of Materials Chemistry A, 2015, 3(16), 8800.
83 Zhang Q, He H N, Huang X B, et al. Chemical Engineering Journal, 2018, 332, 57.
[1] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[2] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[3] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[4] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[5] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[6] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[7] 张意丽, 汤旭涛, 李坚烨, 王府权, 唐康, 胡金星, 方振兴, 严洁峰, 王卫. 冷冻干燥辅助法制备具有增强储锂性能的介孔NiMoO4纳米簇[J]. 材料导报, 2021, 35(24): 24011-24017.
[8] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[9] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[10] 杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124.
[11] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[12] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[13] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[14] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[15] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed