Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21010239-13    https://doi.org/10.11896/cldb.21010239
  无机非金属及其复合材料 |
水系锌离子电池正极材料的研究进展
曹鹏飞1, 刘雅婷1, 陈妮1, 汤文静1, 李福枝1, 夏勇1, 孙翱魁1,2,*
1 湖南工业大学包装材料工程学院,湖南 株洲 412007
2 中南大学冶金与环境学院,长沙 410083
Research Progress of Cathode Materials for Aqueous Zinc Ion Battery
CAO Pengfei1, LIU Yating1, CHEN Ni1, TANG Wenjing1, LI Fuzhi1, XIA Yong1, SUN Aokui1,2,*
1 School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China
2 School of Metallurgy and Environment, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 31543KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水系锌离子电池(ZIBs)是近年发展起来的一种新型二次电池,具有能量密度高、功率密度高、放电过程高效安全、电池材料无毒廉价、制备工艺简单等优点,在电动汽车和储能电网等新兴的大规模储能领域具有很高的应用价值和发展前景。
目前,阻碍水系锌离子电池进一步发展的主要因素之一就是缺乏合适的正极材料。Zn2+及其水合离子半径大,在嵌入/脱附时,会引发正极材料不可逆形变甚至结构坍塌,导致电池容量快速衰减;正极材料导电性较差、充放电过程中电极极化较大,使得正极充电电压与析氧电压部分重合,充电过程中正极材料会对水进行催化产生氧气,导致电池胀气失效;二价的Zn2+与正极材料的晶体结构之间的静电相互作用过强,导致Zn2+嵌入容量小等。因此,开发在Zn2+存储过程中既能提供高容量又能保持良好结构稳定性的正极材料至关重要。
针对水系锌离子电池正极材料存在的缺陷,研究人员采用多种改性方法以改良其性能:(1)引入客体粒子,通过引入金属离子、有机分子和水分子等客体粒子,使主体框架发生结构性变化,获得更稳定的骨架;(2)制备本征混合价态材料,混合价态能够适应充放电过程中正极材料的体积变化和价态变化;(3)引入氧空位,增加活性位点,促进Zn2+扩散动力学,提升材料容量;(4)与导电材料复合,改善材料整体导电性,提升结构稳定性;(5)纳米结构改性,赋予材料更高比表面积,缩短Zn2+扩散距离,增大电化学反应接触面积。
本文对水系锌离子电池的优点及储能机理进行了简要介绍,基于正极材料在水系锌离子电池中的关键作用,综述了几种常见的正极材料(如锰氧化物、钒氧化物、普鲁士蓝类似物),且对各类正极材料的结构、性能及缺陷进行了梳理,重点讨论了掺杂客体粒子、复合导电材料、制备本征混合价态和构造纳米结构等改性方法,并指出水系锌离子电池正极材料未来的重点发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹鹏飞
刘雅婷
陈妮
汤文静
李福枝
夏勇
孙翱魁
关键词:  水系锌离子电池  储能机理  正极材料  锰氧化物  钒氧化物  普鲁士蓝类似物  改性方法    
Abstract: Aqueous zinc ion batteries (ZIBs), a new type of aqueous secondary batteries proposed in recent years, show great practical value and developmental prospects in the field of scale energy storage including electric vehicle and energy storage grid owing to their high energy density and high power density, safe and efficient discharge processes, cheap and nontoxic electrode materials and simple manufacturing process.
At present, one of the main factors hindering the further development of ZIBs is the lack of suitable cathode materials. Due to the large ion radius of Zn2+ and its hydrated ions, it will cause irreversible deformation or structural collapse of the cathode electrode material during insertion/desorption process, resulting in a rapid decline in battery capacitance. The poor conductivity of the cathode electrode material and serious electrode polarization during charging and discharging cause the charging voltage of cathode partially overlaps with the oxygen evolution voltage. As a result, the cathode electrode material will catalyze the water to produce oxygen, causing the battery flatulence to invalid during the charging process.Moreover, the strong electrostatic interaction between the divalent Zn2+ and the crystal structure of the cathode electrode material leads to unsatisfactory Zn2+ insertion capacitance. Therefore, it is crucial to develop a cathode material that can provide high capacity and maintain good structural stability during Zn2+ insertion/desorption process.
In view of the shortcomings of the cathode material of the ZIBs, a variety of modification methods are used to improve their performance: (Ⅰ) guest particles, such as metal ions, organic molecules and water molecules, are introduce in to the host so a more stable frame can be obtained through its structural changes; (Ⅱ) intrinsic mixed valence materials are prepared because of their better adaptability to the volume changes and valence changes of the cathode electrode material during charging and discharging; (Ⅲ) introduce oxygen vacancies to increase active sites to promote Zn2+ diffusion kinetics and increase material capacity; (Ⅳ) conductive materials are composed to improve the overall conductivity of the material and enhance structural stability; (Ⅴ) the nanostructure modification is carried out to enlarge specific surface area of cathode material, shorten the Zn2+ diffusion distance and increase the contact area of electrochemical reaction.
This article gives a brief introduction to ZIBs, its advantages and its energy storage mechanisms. Based on the key role of cathode materials in ZIBs, several common cathode materials such as manganese-based oxides, vanadium-based oxides, and prussian blue analogs are emphatically reviewed. Moreover, the structures, properties and defects of all above cathode materials are expounded, and the modification methods including doping guest particles, compositing with conductive materials, preparing intrinsic mixed valence states and constructing nanostructures are primarily discussed. At the end of this view, we pointed out several promising directions of the development of cathode materials for ZIBs.
Key words:  aqueous zinc ion battery    energy storage mechanism    cathode material    manganese oxide    vanadium oxide    prussian blue analogue    modification method
发布日期:  2022-12-09
ZTFLH:  O646.21  
基金资助: 国家自然科学基金(51704108);湖南省教育厅科学研究项目(18B293;19K028);湖南省普通高等学校教学改革研究项目(HNJG-2020-0572);湖南省学位与研究生教育改革研究重点项目(2019JGZD067)
通讯作者:  *aksun@hut.edu.cn   
作者简介:  曹鹏飞,2018年6月毕业于湖南工业大学,获得学士学位。现为湖南工业大学包装与材料工程学院硕士研究生,在孙翱魁博士的指导下进行研究。目前主要研究领域为水系锌离子电池钼基正极材料。
孙翱魁,湖南工业大学包装与材料工程学院讲师、硕士研究生导师,湖南省青年骨干教师。2008年本科毕业于中南大学材料科学与工程学院,2016年在中南大学材料科学与工程学院材料加工工程专业取得博士学位。主要从事金属纳米粉末的制备及致密化、水系锌离子电池正极材料的开发等工作。近年来,在Applied Surface ScienceInternational Journal of Hydrogen EnergyJournal of Alloys and Compounds等期刊发表论文30余篇。
引用本文:    
曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
CAO Pengfei, LIU Yating, CHEN Ni, TANG Wenjing, LI Fuzhi, XIA Yong, SUN Aokui. Research Progress of Cathode Materials for Aqueous Zinc Ion Battery. Materials Reports, 2022, 36(23): 21010239-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010239  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21010239
1 Zhang Y Z. Synthesis of novel pseudocapacitive materials and their application in flexible supercapacitors. Ph.D. Thesis, Nanjing University of Posts and Telecommunications, China, 2016 (in Chinese).
张一洲. 新型赝电容材料的制备及其在柔性超级电容器中的应用. 博士学位论文, 南京邮电大学, 2016.
2 Chang B. Preparation and electrochemical performance of silicon-based composite anode materials for lithium-ion batteries.Master's Thesis, Taiyuan University of Technology, China, 2017 (in Chinese).
畅波. 锂离子电池硅基复合负极材料的制备及其电化学性能的研究. 硕士学位论文, 太原理工大学, 2017.
3 Zhang L Y, Chen L, Zhou X F, et al.Advanced Energy Materials, 2015, 5(2), 1.
4 Ming J, Guo J, Xia C, et al.Materials Science and Engineering R, 2019, 135, 58.
5 Li Z Y. Preparation and modification of cathode materials for zinc secon-dary battery. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
李昭宇. 锌二次电池正极材料的制备与改性研究. 硕士学位论文, 哈尔滨工业大学, 2017.
6 Cheng L N, Yan M Y, Mei Z W, et al. Journal of Inorganic Materials, 2017, 32(3), 225 (in Chinese).
陈丽能, 晏梦雨, 梅志文, 等. 无机材料学报, 2017, 32(3), 225.
7 Wang F X, Yu F, Wang X W, et al.ACS Applied Materials & Interfaces, 2016, 8(14), 9022.
8 Xu C J, Li B H, Du H D, et al.Angewandte Chemie-International Edition, 2012, 51(4), 933.
9 Lee B, Yoon C S, Lee H R, et al.Scientific Reports, 2014, 4(1), 6066.
10 Pan H L, Shao Y Y, Yan P F, et al.Nature Energy, 2016, 1, 16039.
11 Sun W, Wang F, Hou S Y, et al.Journal of the American Chemical Society, 2017, 139(29), 9775.
12 Song M, Tan H, Chao D L, et al.Advanced Functional Materials, 2018, 28(41), 1802564.
13 Wei C G. An investigation on tunnel controlling and electrochemical cation storage performance of manganese dioxide. Ph.D. Thesis, Tsinghua University, China, 2013(in Chinese).
魏春光. 二氧化锰的隧道调控和电化学离子存储性能研究. 博士学位论文, 清华大学, 2013.
14 Xu D W, Li B H, Wei C G, et al.Electrochimica Acta, 2014, 133, 254.
15 Peng H J, Fan H Q, Yang C H, et al.RSC Advances, 2020, 10(30), 17702.
16 Qian Y, Meng C, Cheng Q, et al.Journal of Materials Science: Materials in Electronics, 2020, 31(18), 15943.
17 Zhang N, Cheng F Y, Liu J X, et al. Nature Communications, 2017, 8(1), 405.
18 Zhang J Y, Huang Y, Li Z X, et al.Nanotechnology, 2020, 31(37), 375401.
19 Yao Z F, Cai D P, Cui Z X, et al.Ceramics International, 2020, 46(8), 11237.
20 Huang J, Tu J Y, Lv Y, et al.Synthetic Metals, 2020, 266, 116438.
21 Li Z X, Huang Y, Zhang J Y, et al.Nanoscale, 2020, 12(6), 4150.
22 Ang Z W J, Xiong T, Lee W S V, et al. Chemnanomat, 2020, 6(9), 1357.
23 Xiong T, Yu Z G, Wu H J, et al. Advanced Energy Materials, 2019, 9(14), 1803815.
24 Tan Q Y, Li X T, Zhang B, et al. Advanced Energy Materials, 2020, 10(38), 2001050.
25 Zhang N, Chen F Y, Liu Y C, et al. Journal of the American Chemical Society, 2016, 138(39), 12894.
26 Chen L, Gu X, Jiang X L, et al. Journal of Power Sources, 2014, 272, 991.
27 Hu P, Yan M Y, Zhu T, et al.ACS Applied Materials & Interfaces, 2017, 9(49), 42717.
28 Zhang N, Dong Y, Jia M, et al.ACS Energy Letters, 2018, 3(6), 1366.
29 Liu Q, Tan G Q, Wang P, et al.Nano Energy, 2017, 36, 197.
30 Ding J W, Du Z G, Gu L Q, et al.Advanced Materials, 2018, 30(26), 1800762.
31 Chen L L, Yang Z H, Huang Y G.Nanoscale, 2019, 11(27), 13032.
32 Pang Q, Sun C L, Yu Y H, et al.Advanced Energy Materials, 2018, 8(19), 1800144.
33 He P, QuanY L, Xu X, et al. Small, 2017, 13(47), 1702551.
34 Cai Y S, Liu F, Luo Z G, et al.Energy Storage Materials, 2018, 13, 168.
35 Wang Y, Cao G Z.Chemistry of Materials, 2006, 18(12), 2787.
36 Yang Y Q, Tang Y, Fang G Z, et al.Energy & Environmental Science, 2018, 11(11), 3157.
37 Kundu D P, Adams B D, Duffort V, et al.Nature Energy, 2016, 1(10), 16119.
38 Fang G Z, Zhou J, Pan A Q, et al.ACS Energy Letters, 2018, 3(10), 2480.
39 Wan F, Zhang L L, Wang X Y, et al.Advanced Functional Materials, 2018, 28(45), 1804975.
40 Cheng F Y, Chen J. Journal of Materials Chemistry, 2011, 21(27), 9841.
41 Zavalij P Y, Whittingham M S. Acta Crystallographica Section B: Structural Science, 1999, 55(5), 627.
42 He P, Zhang G B, Liao X B, et al.Advanced Energy Materials, 2018, 8(10), 1702463.
43 Tang B Y, Zhou J, Fang G Z, et al. Journal of the Electrochemical Society, 2019, 166(4), A480.
44 Wan F, Zhang L L, Dai X, et al.Nature Communications, 2018, 9(1),1656.
45 Shin J, Choi D S, Lee H J, et al.Advanced Energy Materials, 2019, 9(14), 1900083.
46 Hu P, Zhu T, Wang X P, et al. Nano Letters, 2018, 18(3), 1758.
47 Liu X, Zhang H, Geiger D, et al.Chemical Communications, 2019, 55(16), 2265.
48 Zhou J, Shan L T, Wu Z X, et al.Chemical Communications, 2018, 54(35), 4457.
49 Shan L T, Zhou J, Zhang W Y, et al.Energy Technology, 2019, 7(6), 1900022.
50 Li X Y, Liu C F, Zhang C K, et al.ACS Applied Materials & Interfaces, 2016, 8(37), 24629.
51 Liu Q, Tan G Q, Wang P, et al.Nano Energy, 2017, 36, 197.
52 Ding Y L, Wen Y R, Wu C, et al.Nano Letters, 2015, 15(2), 1388.
53 West K, Zachau-Christiansen B, Jacobsen T. Electrochimica Acta, 1983, 28(12), 1829.
54 Sambandam B, Soundharraian V, Kin S, et al.Journal of Materials Chemistry A, 2018, 6(9), 3850.
55 Du Y H, Wang X Y, Sun J C.Nano Research, 2021, 14, 754.
56 Tamilselvan M, Sreekanth T V M,Yoo K, et al. Applied Surface Science, 2020, 529, 147077.
57 Liu F, Chen Z X, Fang G Z, et al.Nano-micro Letters, 2019, 11(1), 1.
58 Li Y K. The research on novel cathode materials for aqueous zinc battery. Master's Thesis, Huazhong University of Science and Technology, China, 2019 (in Chinese).
李艳凯. 新型水系锌离子电池正极材料的研究. 硕士学位论文, 华中科技大学, 2019.
59 Zhang L Y, Chen L, Zhou X F, et al.Advanced Energy Materials, 2015, 5(2), 1400930.
60 Zhang D P. Chemical syntheses and applications of Prussian blue and analogues as positiveelectrode for high-rate aqueous secondary batteries. Ph.D. Thesis, Shandong University, China, 2019 (in Chinese).
张大鹏. 普鲁士蓝衍生物的合成及其在高倍率水系二次电池中的应用. 博士学位论文, 山东大学, 2019.
61 Ma L T, Chen S M, Long C B, et al.Advanced Energy Materials, 2019, 9(45), 1902446.
62 Yang Q, Mo F N, Liu Z X, et al. Advanced Materials, 2019, 31(32), 1901521.
[1] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[2] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[3] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[4] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[5] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[6] 邱晶, 赵明, 王健礼, 陈耀强. 地表臭氧分解用氧化锰研究进展[J]. 材料导报, 2021, 35(21): 21050-21057.
[7] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[8] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[9] 杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124.
[10] 郭梓阳, 霍旺晨, 张育新, 任山, 杨剑. 锰基低温NH3-SCR脱硝催化剂的研究概述[J]. 材料导报, 2021, 35(13): 13085-13099.
[11] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[12] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[13] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[14] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[15] 蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 水系锌离子电池负极材料的研究进展[J]. 材料导报, 2020, 34(13): 13068-13075.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed