Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21010198-7    https://doi.org/10.11896/cldb.21010198
  高分子与聚合物基复合材料 |
纳米纤维素基复合材料及其用于柔性储能器件的研究进展
王雅君1, 白秋红1, 伍根成1, 王正2,*, 李聪1, 申烨华1
1 西北大学化学与材料科学学院,合成与天然功能分子教育部重点实验室,西安 710127
2 西北大学食品科学与工程学院,西安 710069
Nanocellulose-Based Conductive Composites and Their Application in Flexible Energy Storage Devices: a Review
WANG Yajun1, BAI Qiuhong1, WU Gencheng1, WANG Zheng2,*, LI Cong1, SHEN Yehua1
1 Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
2 College of Food Science and Engineering, Northwest University, Xi'an 710069, China
下载:  全 文 ( PDF ) ( 17453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米纤维素是一类具有大比表面积、高反应活性、高机械强度、良好生物相容性、优异热稳定性以及可降解等优异性能的纳米高分子材料。根据其来源、特性、制备方法,可大致分成纤维素纳米纤丝(CNF)、纤维素纳米晶体(CNC)、细菌纤维素(BC)三类,三者的微观形态和尺寸大小有所差异。纳米纤维素凭借其高抗张强度,在复合增强材料的填充应用上表现出优异的机械柔韧性,借此将其与导电聚合物、碳材料和金属化合物等导电物质复合,可形成具有优异力学性能和电化学性能的导电复合材料,这类材料在柔性储能器件等领域有着广泛的应用前景。本文重点回顾了纳米纤维素与多种导电物质复合制备导电复合材料的工艺方法及电化学性能表征,并概述了基于纳米纤维素的导电复合材料在柔性储能器件锂离子电池(LIBs)和超级电容器(SCs)上的应用研究进展,在总结相关研究的基础上进一步讨论了上述制备应用过程中存在的问题,并针对此类问题展望了纳米纤维素基导电复合材料在今后研究应用的重点和方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雅君
白秋红
伍根成
王正
李聪
申烨华
关键词:  纳米纤维素  导电复合材料  柔韧性  柔性锂离子电池  柔性超级电容器    
Abstract: Nanocellulose is a kind of nanomaterial with high specific surface area, high mechanical strength, excellent thermal stability and biodegra-dability. According to their origin, properties and preparation methods, they can be roughly divided into cellulose nanofibrils (CNF), cellulose nanocrystals (CNC) and bacterial cellulose (BC), which have different physical and microscopic morphology. Nanocellulose has been an ideal candidate for electrode materials for flexible energy storage devices due to its excellent mechanical flexibility. However, the poor conductivity of nanocellulose limited its scale-up application in flexible energy storage devices. Hence, it is necessary to combine with conductive materials to enhance the conductivity. This review focuses on the research progress of nanocellulose-based conductive composite materials over the past few years, including composites formed by nanocellulose and conductive polymers, conductive carbon materials and metal-based compounds. Plenty of the obtained nanocellulose-based conductive composite materials show excellent electrochemical properties and mechanical flexibilities, which are quite desirable for constructing flexible LIBs and flexible SCs. Herein, we will review the preparation methods, characterization techniques and electrochemical property measurements of nanocellulose-based conductive composite materials, and then the overview of the application of nanocellulose-based conductive materials in flexible LIBs and flexible SCs energy storage devices are followed. Finally, we summarize and analyze the problems encountered in practical applications of nanocellulose-based conductive composite materials, and outlook the research direction in future.
Key words:  nanocellulose    conductive composite material    flexibility    flexible lithium-battery    flexible supercapacitor
发布日期:  2022-12-09
ZTFLH:  O646  
基金资助: 国家自然科学基金(21975203;22178284);国家重点研究开发计划(2019YFD1002400);陕西省科学技术计划(2019KW-041)
通讯作者:  *zheng.wang@nwu.edu.cn;yhshen@nwu.edu.cn   
作者简介:  王雅君,2019年6月毕业于衡阳师范学院,获得理学学士学位。现为西北大学化学与材料科学学院硕士研究生,在申烨华导师和王正讲师的指导下进行研究。目前主要研究领域为纳米纤维素的制备及在储能领域的应用。
王正,讲师,本科毕业于郑州大学材料科学与工程学院;硕士毕业于中国科学院大学,师从潘世烈研究员,从事非线性光学晶体材料的研究;博士毕业于德国慕尼黑工业大学,师从Roland A. Fischer教授,从事金属-有机框架(Metal-organic framework,MOF)薄膜材料的研究。于2020年3月入职西北大学食品科学与工程学院。目前主要从事MOF与食品危害物检测、CO2减排、电催化等相关应用基础研究。已在Small、J. Mater. Chem. A、ACS Appl. Mater. Interfaces等国际知名杂志以第一或通信作者发表论文13篇。
申烨华,博士,二级教授,博士研究生导师。本科毕业于延安大学,硕士、博士均毕业于西北大学。一直从事资源化学、化学生物学与分析化学的教学和科研工作,已在西北特色木本油料植物资源开发利用和产品研制方面形成特色的研究方向。作为主持人主持国家科技部重点研发计划项目/课题、担任国家科技部科技惠民计划项目技术总负责并主持子项目、主持国家自然科学基金、美国波音公司、陕西省重大/重点科技专项、美国波音公司等科研项目20项。发表研究论文100余篇,其中在Small、Anal.Chem.、ACS Appl. Mater. Interfaces等国际知名SCI期刊发表论文50余篇;获国家授权发明专利20余项。获得国家教学成果奖二等奖。
引用本文:    
王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
WANG Yajun, BAI Qiuhong, WU Gencheng, WANG Zheng, LI Cong, SHEN Yehua. Nanocellulose-Based Conductive Composites and Their Application in Flexible Energy Storage Devices: a Review. Materials Reports, 2022, 36(23): 21010198-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010198  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21010198
1 He W, Wu B, Lu M, et al. Molecules, 2020, 25(12), 2793.
2 Shi H, Wen G, Nie Y, et al. Nanoscale, 2020, 12(9), 5261.
3 Jung J, Cho H, Yuksel R, et al. Nanoscale, 2019, 11(43), 20356.
4 Nguyen D T, Youn H. ACS Applied Materials & Interfaces, 2019, 11(45), 42469.
5 Zuo Y, Liu M. Progress in Textile Science & Technology, 2016(4), 13 (in Chinese).
左艳, 刘敏. 纺织科技进展, 2016(4), 13.
6 Sealy C. Materials Today, 2015, 18(10), 531.
7 Qing Y, Yi J N, Wu Y Q, et al. Scientia Silvae Sinicae, 2018, 54 (3), 134 (in Chinese).
卿彦, 易佳楠, 吴义强,等. 林业科学, 2018, 54(3), 134.
8 Augimeri R V, Varley A J, Strap J L. Frontiers in Microbiology, 2015, 6, 1282.
9 Huang B, Lu Q L, Tang L R. Journal of Forestry Engineering, 2016, 1 (5), 1 (in Chinese).
黄彪, 卢麒麟, 唐丽荣. 林业工程学报, 2016, 1(5), 1.
10 Lyu S Y, Fu F, Wang S Q, et al. Scientia Silvae Sinicae, 2015, 51 (10), 117(in Chinese).
吕少一, 傅峰, 王思群, 等. 林业科学, 2015, 51(10), 117.
11 Habibi Y. Chemical Society Reviews, 2014, 43(5), 1519.
12 Chen R, Li X, Huang Q, et al. Chemical Engineering Journal, 2021, 412, 128755.
13 Liu X L, Wang A, Wang C P, et al. China Pulp Paper, 2020, 39 (4), 74(in Chinese).
刘雄利, 王安, 王春平, 等. 中国造纸, 2020, 39(4), 74.
14 Satyamurthy P, Jain P, Balasubramanya R H, et al. Carbohydrate Polymers, 2011, 83(1), 122.
15 Lin H J, Weng W, Ren J, et al. Advanced Materials, 2014, 26(8), 1217.
16 Sun J F, Huang Y, Fu C X, et al. Journal of Materials Chemistry A, 2016, 4(38), 14877.
17 Hoshide T, Zheng Y C, Hou J Y, et al. Nano Letters, 2017, 17(6), 3543.
18 Niu Q Y, Guo Y Q, Gao K Z, et al. RSC Advances, 2016, 6(110), 109143.
19 Ewulonu C M, Chukwuneke J L, Nwuzor I C, et al. Carbohydrate Polymers, 2020, 235, 116028.
20 Fei G Q, Wang Y, Wang H H, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(9), 8215.
21 Kim H, Eun Song J, Silva C, et al. Textile Research Journal, 2019, 90(13-14), 1517.
22 Edberg J, Malti A, Granberg H, et al. Flexible and Printed Electronics, 2017, 2(4), 045010.
23 Ko Y, Kim J, Kim D, et al. Nanomaterials, 2019, 9(4), 612.
24 Hamedi M M, Hajian A, Fall A B, et al. ACS Nano, 2014, 8(3), 2467.
25 Wan Z M, Chen C C, Meng T T, et al. ACS Applied Materials & Interfaces, 2019, 11(45), 42808.
26 Yang W X, Zhang Y, Liu T Y, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 9102.
27 Jiang Q S, Kacica C, Soundappan T, et al. Journal of Materials Chemistry A, 2017, 5(27), 13976.
28 Jiang J C, Sun K. Chemistry and Industry of Forest Products, 2017, 37 (1), 1(in Chinese).
蒋剑春, 孙康. 林产化学与工业, 2017, 37(1), 1.
29 Li Z, Liu J, Jiang K R, et al. Nano Energy, 2016, 25, 161.
30 Sobhan A, Muthukumarappan K, Cen Z S, et al. Carbohydrate Polymers, 2019, 225, 115189.
31 Zhu L T, Zong L, Wu X C, et al. ACS Nano, 2018, 12(5), 4462.
32 Zhou S Y, Kong X Y, Zheng B, et al. ACS Nano, 2019, 13(8), 9578.
33 Tian W Q, Vahid Mohammadi A, Reid M S, et al. Advanced Materials, 2019, 31(41), 1902977.
34 Sobolciak P, Ali A, Hassan M K, et al. Plos One, 2017, 12(8), e0183705.
35 Bai Q, Xiong Q, Li C, et al. Applied Surface Science, 2018, 455, 795.
36 Bai Q H, Xiong Q C, Li C, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 9390.
37 Shu Y, Bai Q, Fu G, et al. Carbohydrate Polymers, 2020, 227, 115346.
38 Xiong Q, Bai Q, Li C, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 315.
39 Dobashi A, Maruyama J, Shen Y H, et al. Carbohydrate Polymers, 2018, 200, 381.
40 Zhang X Y, Huang Y L, Wu S W, et al. Acta Physico-Chimica Sinica, 2018, 34 (2), 219(in Chinese).
张熙悦, 黄雅兰, 吴树炜, 等. 物理化学学报, 2018, 34(2), 219.
41 Huang Y, Lin Z X, Zheng M B, et al. Journal of Power Sources, 2016, 307, 649.
42 Nguyen H K, Bae J, Hur J, et al. Nanomaterials, 2019, 9(4), 655.
43 Xu Y, Zhu J W, Fang J B, et al. Journal of Nanomaterials, 2020, 2020, 3879040.
44 Huang C, Ji H, Guo B, et al. Cellulose, 2019, 26(11), 6669.
45 Sheng J, Chen T, Wang R B, et al. Journal of Membrane Science, 2020, 595, 117550.
46 Yang P X, Liu L, Li L B, et al. Electrochimica Acta, 2014, 115, 454.
47 Song X F, Zhang Y N, Ye Y W, et al. ACS Applied Energy Materials, 2020, 3(5), 4906.
48 Tu Q M, Fan L Q, Pan F, et al. Electrochimica Acta, 2018, 268, 562.
49 Wan J Q, Zhang J M, Yu J, et al. ACS Applied Materials & Interfaces, 2017, 9(29), 24591.
50 Zhang H, An X, Liu L, et al. Journal of Membrane Science, 2019, 591, 117346.
51 Chen Y P, Lyu S Y, Han S J, et al. RSC Advances, 2018, 8(70), 39918.
52 Chen M F, Chen J Z, Zhou W J, et al. Journal of Materials Chemistry A, 2019, 7(46), 26524.
[1] 于佳酩, 王士鹏, 董娅慧, 王雨梦, 李玉, 程倩. 基于磁场-真空协同作用局部调制胆甾型纤维素[J]. 材料导报, 2022, 36(11): 20120091-6.
[2] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[3] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[4] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[5] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[6] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[7] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[8] 王丽, 王哲, 宁国艳, 沈玉林, 王喜明. 木基导电电磁屏蔽材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2320-2328.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed