Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21010168-9    https://doi.org/10.11896/cldb.21010168
  无机非金属及其复合材料 |
介孔硅止血材料的研究现状及应用前景
张卓然1,2, 李钒1,*, 侯敏2, 张媛媛2, 丁晟1, 魏晓慧1, 林松1
1 军事科学院卫勤保障技术研究所,天津 300161
2 陆军第951医院超声诊断科,新疆 库尔勒 841000
Development of Mesoporous Silica Hemostatic Materials and Their Application Prospects
ZHANG Zhuoran1,2, LI Fan1,*, HOU Min2, ZHANG Yuanyuan2, DING Sheng1, WEI Xiaohui1, LIN Song1
1 Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China
2 Department of Ultrasound Diagnosis, Army Hospital 951, Korla 841000, Xinjiang, China
下载:  全 文 ( PDF ) ( 7452KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 失控的出血是战时与和平时期创伤性死亡的重要原因,止血材料研究是院前急救领域的热点问题。院前止血材料在止血速率、环境适应性和生物安全性方面均有较高的要求。现有的高分子类和无机类止血材料,往往存在性能不稳定、环境适应性差、成本高或潜在安全风险等问题。微观结构与沸石等相似的介孔二氧化硅(介孔硅)是最有潜力的无机类止血材料之一,良好的生物相容性和环境适应性、多孔结构和高比表面积、可调节的孔径和组分及表面易修饰等特性使其极其适用于院前急救止血。
介孔硅材料主要通过自组装的方式构建,水热/溶剂热合成法是最典型的合成工艺,也有研究运用微波辐射合成法或超声合成法,可缩短介孔硅制备时间,降低成本。在介孔硅成形过程中,需要将前驱体结构中的致孔模板剂除去,保留无机骨架结构,从而形成有序的多孔结构。模板剂的脱除是介孔硅合成的关键环节,常用的方法有高温煅烧、溶剂萃取、超临界萃取、微波加热等。研究显示,介孔硅材料孔径越大凝血效果越好,促进细胞分化效果越明显。因此,引入扩孔工艺有望提升介孔硅材料的止血性能。此外,介孔硅可与金属离子、功能药物、有机高分子等复合,在快速止血的同时实现抗菌、促愈合等多种功能。介孔硅的形貌、成分、表面修饰等对其生物安全性均有一定影响,可通过材料设计、功能负载等来优化材料的生物安全性,增强其在院前急救中的可操作性和实用性。
本文综述了介孔硅的快速合成方法,介绍了介孔硅材料制备过程中模板剂脱除、孔径控制、功能拓展的方法,讨论了介孔硅作为止血材料的生物安全性问题,并对介孔硅材料的制备及未来止血应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张卓然
李钒
侯敏
张媛媛
丁晟
魏晓慧
林松
关键词:  介孔硅  止血材料  合成  生物安全性    
Abstract: Uncontrolled bleeding is an important cause of traumatic death in wartime and peacetime. The research on hemostatic materials is a hot issue in the field of pre-hospital first aid. The pre-hospital hemostatic materials have high requirements in terms of hemostatic rate, environmental adaptability and biological safety. The existing polymer and inorganic hemostatic materials often have the problems of unstable performance, poor environmental adaptability, high cost and potential safety risks. Mesoporous silica with a similar microstructure to zeolite is one of the most potential inorganic hemostatic materials, which is extremely suitable for pre-hospital emergency hemostasis, according to its good biocompatibility and environmental adaptability, porous structure and high specific surface area, adjustable pore size and composition, and facile surface modification.
Mesoporous silica materials are mainly constructed by molecular self-assembly, and hydrothermal or solvothermal synthesis is the most typical preparation technology. There are also studies on microwave radiation synthesis or ultrasonic synthesis to prepare mesoporous silica, which could shorten the preparation time and reduce the cost. The pore-forming template agent in the precursor should be removed in the preparation process of mesoporous silica, and the inorganic framework structure be retained to form an ordered porous microstructure. The removal of the template is the key to the synthesis of mesoporous silica, usually including high-temperature calcination, solvent extraction, supercritical fluid extraction, microwave heating, and so on. It was shown that the larger the pore size of mesoporous silicon material, the better the blood coagulation effect and the more obvious the cell differentiation promoting function is. Therefore, the pore expansion technology is expected to improve the hemostatic properties of mesoporous silica materials. In addition, mesoporous silica could be compounded with metal ions, functional drugs and organic polymers, achieving various functions, such as antibacterial and promoting healing. The morphology, composition and surface modification of the mesoporous silica have a certain influence on its biosafety. The biosafety of the mesoporous silica can be optimized by material design and functional modifications to enhance its operability and practicability in the pre-hospital emergency.
This article reviews the rapid synthesis method of mesoporous silica, introduces the method of template removal, pore size control and function diversification during the preparation of mesoporous hemostatic materials, discusses the problem of biosafety of mesoporous silica as a hemosta-tic material. The preparation trend of porous silica materials and the prospects of future hemostatic applications are prospected.
Key words:  mesoporous silica    hemostatic material    synthesis    biological safety
发布日期:  2022-12-09
ZTFLH:  R318.08  
通讯作者:  *vanadium_1981@163.com   
作者简介:  张卓然,2016年毕业于中国人民解放军第四军医大学,获得工学学士学位。现为军事科学院卫勤保障技术研究所硕士研究生,从事生物医用材料方向研究。
李钒,2016年博士毕业于军事科学院卫勤保障技术研究所,现为军事科学院卫勤保障技术研究所高级工程师。主要从事止血包扎材料、碳纳米材料在荧光标记、光能转化、光催化等方面的应用基础研究。以第一/通信作者发表学术论文30余篇,负责国家自然科学基金、天津市自然科学基金以及军队各类项目20余项。
引用本文:    
张卓然, 李钒, 侯敏, 张媛媛, 丁晟, 魏晓慧, 林松. 介孔硅止血材料的研究现状及应用前景[J]. 材料导报, 2022, 36(23): 21010168-9.
ZHANG Zhuoran, LI Fan, HOU Min, ZHANG Yuanyuan, DING Sheng, WEI Xiaohui, LIN Song. Development of Mesoporous Silica Hemostatic Materials and Their Application Prospects. Materials Reports, 2022, 36(23): 21010168-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010168  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21010168
1 Yuan H, Chen L, Hong F F. ACS Applied Materials & Interfaces ,2020,12, 3382.
2 Smith S A. Journal of Veterinary Emergency and Critical Care, 2009, 19(1), 3.
3 Zhang S, Xu Q H, Tong L, et al. Chinese Journal of Tissue Engineering Research,2021, 25(10), 1628 (in Chinese).
张爽,徐庆华,童琳,等.中国组织工程研究,2021,25(10),1628.
4 Hu Z, Zhang D Y, Lu S T, et al. Marine Drugs, 2018, 16(8), 273.
5 Soares Lívia Prates, Oliveira Marília Gerhardt De, Pinheiro Antônio Luiz Barbosa, et al. Photomedicine and Laser Surgery, 2008, 26(1), 10.
6 Levy J H, Szlam F, Tanaka K A, et al.Anesthesia & Analgesia,2012, 114(2), 261.
7 Zhong Y T, Hu H Y, Min N N, et al. Annals of Translational Medicine, 2021, 9(7), 577.
8 Fathi P, Sikoraki M, Christodoulides K, et al.Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2018, 106(5), 1662.
9 Smith A H, Laird C, Porter K, et al. Emergency Medicine Journal, 2013, 30(10), 784.
10 Kheirabadi B, Mace J, Terrazas I, et al. Journal of Trauma-Injury Infection and Critical Care, 2010, 68(2), 269.
11 Xi C Y, Zhang Y, Wang D Q. Journal of Experimental Hematology, 2013, 21(2), 526(in Chinese).
席朝运,庄远,汪德清.中国实验血液学杂志,2013, 21(2), 526.
12 Xu K H, Qin S, He R Z, et al. Journal of Navy Medicine, 2020, 41(4), 482(in Chinese).
徐凯航,秦升,赫荣智,等.海军医学杂志, 2020, 41(4), 482.
13 Hasan B A, Gemma B U, Dana M, et al. The Journal of Trauma and Acute Care Surgery, 2003, 54( 6), 1077.
14 Li Y, Liao X, Zhang X, et al. Nano Research, 2014, 7(10), 1457.
15 Wan Y, Zhao D Y.Chemical Reviews, 2007, 107(7), 2821.
16 Chen L, Zhou X, He C.Wiley Interdisciplinary Reviews:Nanomed.Nanobiotechnol,2019,11,e1573.
17 Li X S, Liu C S, Yuan Y, et al. Journal of Inorganic Materials, 2008, 23(2), 327(in Chinese).
李晓生,刘昌胜,袁媛,等.无机材料学报,2008, 23(2), 327.
18 Meddahi-Pelle A, Legrand A, Marcellan A, et al.Angewandte Chemie International Edition, 2014, 53, 6369.
19 Chen B C, He Q, Hu M, et al. Journal of Wuhan Institute of Technology, 2019, 41(6), 546(in Chinese).
陈炳才,何倩,胡淼,等.武汉工程大学学报, 2019,41(6),546.
20 Yang H. Synthesis and adsorption performance of functionalized mesoporous silicates. Ph.D. Thesis, Tongji University, China, 2008(in Chinese).
杨虹.功能化介孔硅材料的合成及其吸附特性研究.博士学位论文,同济大学,2008.
21 Wang Y, Li J H, Huang Z Y,et al. Tianjin Chemical Industry,2016,30(4),1(in Chinese)
王胤,李君华,黄钟扬,等.天津化工,2016, 30(4), 1.
22 Liang B. Contemporary Chemical Industry,2016, 45(10), 2473(in Chinese).
梁兵.当代化工,2016, 45(10), 2473.
23 Feng S H, He G F, Du J Q, et al. Acta Chimica Sinica,2007, 65(6), 566(in Chinese).
冯尚华,何国芳,杜建全,等.化学学报, 2007, 65(6), 566.
24 Liu G, Pang J, Huang Y ,et al. Industrial & Engineering Chemistry Research, 2017, 56(30), 256.
25 Zeng S J. Synthesis of zeolites and hierarchically porous materials. Ph.D. Thesis, Jilin University, China, 2016 (in Chinese).
曾尚景.绿色合成沸石分子筛及多级孔材料.博士学位论文,吉林大学,2016.
26 Bilecka Idalia, Niederberger Markus. Nanoscale, 2010, 2(8), 1358.
27 Guan S, Inagaki S, Ohsun T, et al. Journal of the American Chemical Society,2000, 122(23), 5660.
28 Wu C G, Bein T. Chemical Communications, 1996,6, 925.
29 Hoang L H, Van Hanh P, Phu N D, et al. Journal of Physics and Chemistry of Solids, 2015, 77, 122.
30 Zhang S S.Preparation and adsorption properties of amino functionalized mesoporous silica and hybrid silica carbon material. Master's Thesis, Shandong University, China, 2019(in Chinese).
张珊珊.氨基功能化介孔二氧化硅和介孔硅碳材料的制备及吸附性能.硕士学位论文,山东大学, 2019.
31 Arudra P, Hao Y W, Chun C T, et al. Microporous and Mesoporous Materials, 2010, 131(3), 385.
32 Youssef Snoussi, Stéphane Bastide, Manef Abderrabba, et al. Ultrasonics Sonochemistry, 2018, 41, 551.
33 Lebeau Bénédicte, Galarneau Anne, Linden Mika. Chemical Socirty Reviews,2013, 42(9), 3661.
34 Wu S H, Mou C Y, Lin H P. Chemical Society Reviews, 2013, 42(9), 3862.
35 He J, Yang X B, Evans D G.Chemical Physics, 2003, 77, 270.
36 Mereteia E, Hala′sza J, Me′hn D,et al.Journal of Molecular Structure, 2003, 651, 323.
37 de Avila S G, Silva L C C, Jivaldo R. Microporous and Mesoporous Materials, 2016, 234, 277.
38 Runa Dey, Arunkumar Samanta. Korean Journal of Chemical Engineering Volume, 2020, 37, 1951.
39 Yao Y F, Zhang M S, Yang Y S. Acta Physico-Chimica Sinca, 2001, 17(12), 1117(in Chinese).
姚云峰,张迈生,杨燕生.物理化学学报, 2001, 17(12), 1117.
40 Chen Z H, Han L, Liu C J, et al.Nanoscale, 2020, 12(27), 14926.
41 Baker S E, Sawvel A M, Fan J, et al. Langmuir, 2008, 24, 14254.
42 Liu X W, Li J M, Duan A J. Petroleum Science Bulletin, 2019(3), 323(in Chinese).
刘小妩,李建梅,段爱军.石油科学通报,2019(3), 323.
43 Ligia S, Guth J L. Microporous and Mesoporous Materials,1999, 27(2), 243.
44 Khodakov A Y, Griboval C A, Bechara R, et al. The Journal of Physical Chemistry B, 2001, 105(40), 9805.
45 Fujimoto Kota, Watanabe Kanako, Ishikawa Shunho, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021,609, 125647.
46 Liu J, Yang Q H, Zhao X S et al. Microporous and Mesoporous Materials, 2007, 106, 62.
47 Hye Ran Jang, Hyeon-Jeong Oh, Jin-Hyun Kim, et al. Microporous and Mesoporous Materials, 2013, 165, 219.
48 Shen Z R, Liu Y P, Sun P C, et al. Studies in Surface Science and Catalysis, 2007,165, 29.
49 Ganguly Aparna, Ahmad Tokeer, Ganguli Ashok K. Langmuir,2010, 26(18), 14901.
50 Dai C L, Liu C S, Wei J, et al.Biomaterials, 2010, 31(30), 7620.
51 Chen J W, Ai J, Chen S N, et al.International Journal of Biological Macromolecules, 2019, 139, 1203.
52 Xia D M, Wang X R, Wang Y C,et al. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(4), 256(in Chinese).
夏德萌,王胥人,王元辰,等.中华损伤与修复杂志(电子版). 2019, 14(4), 256.
53 Liu C Y. Construction and hemostasis mechanism of antibacterial hemostatic materials for first aid. Ph.D. Thesis, Dalian University of Technology, China, 2020(in Chinese).
柳春玉. 急救用抗菌止血材料的构建及止血机理研究.博士学位论文,大连理工大学,2020.
54 Li D J, Nie W, Chen L, et al. RSC Advances, 2017, 7, 7973.
55 Ding S, Wei X H, Yang K, et al. Silicon, 2020,13, 4033.
56 Wang C W, Hong H, Lin Z F,et al. RSC Advances, 2015, 5, 104289.
57 Marinescu G, Culita D C, Romanitan C, et al.Applied Surface Science,2020, 520, 146379.
58 Paris J L, Colilla M, Izquierdo-Barba I, et al. Journal of Materials Science ,2017, 52(15), 8761.
59 Tang F Q, Li L L, Chen D. Advanced Materials. 2012, 24, 1504.
60 Lehman S E,Larsen S C. Environmental Science-Nano, 2014, 1, 200.
61 Croissant J G, Qi C, Maynadier M, et al.Frontiers in Molecular Biosciences, 2016, 3, 1.
62 Gouze B, Cambedouzou J, Parre′s-Maynadie′S, et al. Microporous Mesoporous Mater,2014, 183, 168.
63 Bass J D, Grosso D, Boissiere C,et al. Chemistry of Materials, 2007, 19, 4349.
64 Zangabad P S, Karimi M, Mehdizadeh F,et al. Nanoscale, 2017, 9(4),1356.
65 Chen L L, Qian M, Jiang H L, et al. Biomaterials, 2020,236, 119770.
66 Liu Z Y, Xu T T, Wang M, et al. Journal of Materials Chemistry B, 2020, 8(48), 11055.
67 He Q, Zhang Z, Gao F, et al. Small, 2011, 7(2), 271.
68 Chen X T, Li S Y, Xiong Y, et al. Polymer Materials Science and Engineering,2020, 36(6), 118(in Chinese).
陈星陶,李漱阳,熊熠,等.高分子材料科学与工程,2020, 36(6), 118.
69 Wang L Y, You X R, Dai C L, et al. Biomaterials Science,2020, 8, 4396.
70 Xu W X, Zhou M, Guo Z H,et al. Colloids and Surfaces B: Biointerfaces, 2021,206,11912.
71 Yu L S, Shang X Q, Chen H, et al.Nature Communications, 2019, 10(1), 2095.
[1] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[2] 安玉龙, 刘灿, 徐开蒙, 郑云武, 林旭. 生物质碳点荧光材料在生物医药领域中的应用[J]. 材料导报, 2022, 36(22): 20100133-12.
[3] 高丽娜, 陈文革, 李树丰. Ti3AlC2陶瓷粉末的研究现状及进展[J]. 材料导报, 2022, 36(20): 20090196-11.
[4] 石浩, 豆志河, 孟扬, 张廷安. 镁热自蔓延高温合成碳化硼粉体及其成分调控研究[J]. 材料导报, 2022, 36(16): 21060212-6.
[5] 刘员环, 曾美琴, 鲁忠臣, 朱敏. 等离子球磨技术在材料制备中的应用[J]. 材料导报, 2022, 36(15): 20120251-9.
[6] 张堃, 袁新强, 王丹, 梅晶, 蒋鹏, 张伟. VO2(M)粉体合成与表征[J]. 材料导报, 2022, 36(13): 21010087-5.
[7] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[8] 李飞, 崔巍, 田兆波, 张杰, 杜松墨, 陈张霖, 刘光华. 稀释剂种类对燃烧合成氮化硅粉体的影响[J]. 材料导报, 2022, 36(10): 21030087-4.
[9] 詹宁宁, 张丽锋, 赵新星, 秦立娟, 滕厚开. 超支化聚合物的合成及应用[J]. 材料导报, 2021, 35(z2): 616-626.
[10] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[11] 李志锋, 陶金龙, 孔娜, 赵鹏飞, 关杰, 丁宏达. 乳胶手套的性能与乳胶手套穿戴的选择[J]. 材料导报, 2021, 35(Z1): 518-521.
[12] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[13] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[14] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[15] 王学铭, 纪妍妍, 郑春明. 含氟体系中无模板剂合成SSZ-13分子筛[J]. 材料导报, 2021, 35(4): 4038-4041.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed