Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21060212-6    https://doi.org/10.11896/cldb.21060212
  无机非金属及其复合材料 |
镁热自蔓延高温合成碳化硼粉体及其成分调控研究
石浩1,2, 豆志河1,2,*, 孟扬1,2, 张廷安1,2
1 东北大学多金属共生矿生态化冶金教育部重点实验室,沈阳 110819
2 东北大学冶金学院,沈阳 110819
Preparation and Composition Regulation of Boron Carbide Powder via Magnesiothermic-SHS
SHI Hao1,2, DOU Zhihe1,2,*, MENG Yang1,2, ZHANG Ting'an1,2
1 Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 20056KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对自蔓延高温合成制备碳化硼(B4C)存在的纯度低、游离硼含量高等缺陷,本工作以热力学平衡计算为指导,研究了镁热自蔓延高温合成B4C粉体过程中杂质相的形成规律与赋存状态,以及自蔓延产物中杂质相强化浸出去除规律。结果表明:自蔓延快速合成过程中配料比是影响自蔓延产物物相组成的根本因素。随着Mg配料量增加,自蔓延产物中B4C相和MgO相含量逐渐增加,Mg3B2O6相含量逐渐减少;当Mg配料量达到化学计量比后再增加时,自蔓延产物中相含量变化不再明显。酸浸可有效除去自蔓延产物中的MgO副产物相,Mg3B2O6杂质相的强化去除需要采用密闭强化酸浸。密闭强化酸浸可强化酸浸提纯效果,酸浸产物中Mg残留量降至2.06%,游离硼含量降至3.61%。B4C产物为团聚颗粒,平均粒径为5.30 μm,比表面积达13.36 m2·g-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石浩
豆志河
孟扬
张廷安
关键词:  碳化硼  自蔓延高温合成  强化浸出  游离硼    
Abstract: To address the defects of low purity and high free boron content in the preparation of boron carbide (B4C) via Magnesiothermic-SHS method, this work investigated the formation rule and fugacity state of the impurity phase in the process of Magnesiothermic-SHS and the impurity phase removal rule via enhanced leaching, guided by thermodynamic equilibrium calculations. The results show that the ingredient ratio in SHS process is a fundamental factor affecting the phase composition of the SHS products. The content of B4C and MgO phases in the SHS products gradually increases with the increase of Mg content, while the content of Mg3B2O6 decreases. When the Mg content reaches the stoichiometric ratio and then increases, there is no obvious change in the phase content of the products. The MgO byproduct phase from the SHS products can be effectively removed by acid leaching, while the intensive removal of the Mg3B2O6 impurity phase requires the closed enhanced acid leaching, which can enhance the purification effect. The Mg residue in the leached product decreases to 2.06% and the free boron content decreases to 3.61%. The B4C product is agglomerated particles with an average particle size of 5.30 μm and a specific surface area of 13.36 m2·g-1.
Key words:  boron carbide    self-propagation high-temperature synthesis (SHS)    enhanced leaching    free boron
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TB321  
基金资助: 国家自然科学基金(U1908225;U1702253);中央高校基本科研业务费(N182515007;N170908001;N2025004)
通讯作者:  *douzh@smm.neu.edu.cn   
作者简介:  石浩,东北大学博士研究生,2014年9月至2018年7月,在东北大学获得冶金工程专业工学学士学位,本科毕业后在本校直接攻读博士学位。以第一作者发表学术论文一篇,参加国内会议两次并以第一作者发表会议论文两篇,申请国家发明专利1项。主要研究方向为自蔓延冶金、碳化硼陶瓷材料。豆志河,东北大学教授、博士研究生导师,国家自然科学基金优秀青年基金获得者。先后获得东北大学冶金物理化学、有色金属冶金、材料学专业的学士、硕士、博士学位。主持国家自然科学基金优秀青年基金、国家科技支撑计划重大项目、973计划、中央直属高校基本业务费重点项目及企业攻关项目20余项。在HydrometallurgyTransactions of Nonferrous Metals Society of ChinaISIJ International等冶金权威期刊发表论文140多篇,SCI收录32篇次(SCI影响因子累计41.2),EI收录108篇次,他引700多次;获国家发明专利120余项、PCT专利3项;出版学术专著3部。主要研究方向为自蔓延冶金、多级还原制备钛粉、Cu-Cr合金冶炼等。
引用本文:    
石浩, 豆志河, 孟扬, 张廷安. 镁热自蔓延高温合成碳化硼粉体及其成分调控研究[J]. 材料导报, 2022, 36(16): 21060212-6.
SHI Hao, DOU Zhihe, MENG Yang, ZHANG Ting'an. Preparation and Composition Regulation of Boron Carbide Powder via Magnesiothermic-SHS. Materials Reports, 2022, 36(16): 21060212-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060212  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21060212
1 Thevenot F. Key Engineering Materials, 1991, 152(113), 59.
2 Bouchacourt M, Thevenot F. Journal of the Less-Common Metals, 1981, 82, 227.
3 Yan X, Du X H, Long M, et al. China Ceramics, 2015, 51(4), 9(in Chinese).
严茜, 都兴红, 龙孟, 等. 中国陶瓷, 2015, 51(4), 9.
4 Wu Y P, Yan Q Z. Ordnance Material Science and Engineering, 2017, 40(4), 141(in Chinese).
吴燕平, 燕青芝. 兵器材料科学与工程, 2017, 40(4), 141.
5 Sun Z J, Wu Y. Aerospace Materials and Technology, 2000, 30(5), 10(in Chinese).
孙志杰, 吴燕. 宇航材料工艺, 2000, 30(5), 10.
6 Wang Z J, China Powder Science and Technology, 2008, 14(3), 56(in Chinese).
王正军. 中国粉体技术, 2008, 14(3), 56.
7 Cega M, Habaj W, Podgórzak P. Problemy Mechatroniki: Uzbrojenie, Lotnictwo, Inynieria Bezpieczeństwa, 2014, 5(3), 23.
8 Wang L S, Fang Y C, Wu F, et al. Materials Science and Engineering of Powder Metallurgy, 2000(2), 113(in Chinese).
王零森,方寅初,吴芳,等.粉末冶金材料科学与工程,2000(2),113.
9 Osberg K, Schemm N, Balkir S, et al. IEEE Sensors Journal, 2006, 6(6), 1531.
10 Abenojar J, Martínez M A, Velasco F, et al. Journal of Adhesion, 2009, 85(4-5), 216.
11 Dominguez C, Cocuaud N, Drouan D, et al. Journal of Nuclear Mate-rials, 2008, 374(3), 473.
12 Cai K F, Nan C W. Materials Reports, 1998, 12(1), 41(in Chinese).
蔡克峰, 南策文. 材料导报, 1998, 12(1), 41.
13 Liu C H. Material Science & Engineering B, 2000, 72(1), 23.
14 Liu C H. Materials Letters, 2001, 49(5), 308.
15 Sauerschnig P, Watts J L, Vaney J B S, et al. Advances in Applied Ceramics, 2020, 119(2), 97.
16 Peng C. Inclusion analysis and removal mechanisms in preparation of amorphous boron power by self-propagating high-temperature synthesis (SHS) metallurgy.Master's Thesis, Northeastern University, China,2014(in Chinese).
彭超. 自蔓延冶金法制备无定形硼粉中夹杂物分析及去除机制. 硕士学位论文,东北大学, 2014.
17 Jia Y Z, Gao S Y, Xia S P, et al. Chinese Journal of Inorganic Chemistry, 2001(3), 383(in Chinese).
贾永忠, 高世扬, 夏树屏,等. 无机化学学报, 2001(3), 383.
18 Han H Q, Liu G R, Chu Z J, et al. Powder Metallurgy Industry, 2005, 15(1), 39(in Chinese).
韩欢庆, 刘桂荣, 褚征军,等. 粉末冶金工业, 2005, 15(1), 39.
19 Peng C. Inclusion analysis and removal mechanisms in preparation of amorphous boron power by self-propagating high-temperature synthesis(SHS) metallurgy. Master's Thesis, Northeastern University, China, 2014(in Chinese).
彭超. 自蔓延冶金法制备无定形硼粉中夹杂物分析及去除机制. 硕士学位论文, 东北大学, 2014.
20 Alkan M, Sonmez M S, Derin B, et al. Solid State Sciences, 2012,11(14), 1688.
21 Kovalev I D, Ponomarev V I, Konovalikhin S V, et al. International Journal of Self-Propagating High-Temperature Synthesis,2013,22(3),163.
22 Ponomarev V I, Konovalikhin S V, Kovalev I D, et al. Mendeleev Communications, 2014, 24(1), 15.
23 Liang Y J, Che Y C. Handbook of inorganic thermodynamic data, Nor-theast University Press, China, 1993(in Chinese).
梁英教, 车荫昌. 无机物热力学数据手册, 东北大学出版社, 1993.
24 Munir Z, Holt J. Combustion and Plasma Synthesis of High Temperature Materials, VCH Publishers, USA, 1989, pp. 501.
25 Mossino P. Ceramics International, 2004, 30(3), 311.
26 Konovalikhin S V, Ponomarev V I. Russian Journal of Inorganic Chemi-stry, 2009, 54(2), 197.
27 Rentzepis P, White D, Walsh P N. Journal of Physical Chemistry, 1960, 64(11), 1784.
28 Xiao X. China Science and Technology Information, 2018, 586(14), 58(in Chinese).
肖霄. 中国科技信息, 2018, 586(14), 58.
29 Alizadeh A, Taheri-Nassaj E, Ehsani N, et al. British Ceramic Transactions, 2006, 105(6), 291.
30 Zhang J, Li Z, Zhang B. Materials Chemistry & Physics, 2006, 98(2-3), 195.
[1] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[2] 李啸轩, 张强, 朱春城. 以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究[J]. 材料导报, 2020, 34(4): 4032-4036.
[3] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[4] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[5] 曹雷刚, 王晓荷, 崔岩, 杨越, 刘园. 碳化硼粒度对无压浸渗高体分铝基复合材料微观组织和力学性能的影响[J]. 材料导报, 2019, 33(20): 3472-3476.
[6] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[7] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[8] 张 薇,肖国庆,丁冬海. 硼砂对自蔓延高温合成ZrB2粉体的影响[J]. 《材料导报》期刊社, 2017, 31(24): 125-128.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed