Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21040271-7    https://doi.org/10.11896/cldb.21040271
  高分子与聚合物基复合材料 |
载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响
岳世伟1,2, 逄显娟1,2,*, 牛一旭1,3, 黄素玲1,2
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
2 河南科技大学化工与制药学院,河南 洛阳 471023
3 河南科技大学材料科学与工程学院,河南 洛阳 471023
Effects of Load and Velocity on the Friction Properties of Polyether-Ether-Ketone Composites
YUE Shiwei1,2, PANG Xianjuan1,2,*, NIU Yixu1,3, HUANG Suling1,2
1 National Engineering Laboratory for Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 School of Chemical and Pharmaceutical Sciences,Henan University of Science and Technology,Luoyang 471023, Henan, China
3 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 20749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以聚醚醚酮为基体、碳纤维为增强体的复合材料为研究对象,通过磨抛的方法对材料表面进行预处理。利用多功能摩擦磨损试验机对聚醚醚酮及其复合材料进行摩擦实验,系统研究载荷和速度对PEEK及其复合材料摩擦学性能和磨损机理的影响。利用三维形貌仪、扫描电子显微镜、X-射线衍射仪、红外光谱仪、导热系数分析仪对复合材料进行了磨损表面分析和性能测试。研究结果表明:加工成型工艺没有改变PEEK和聚醚醚酮/碳纤维(PEEK/CF)的结晶状态,PEEK没有发生分解和裂解反应,并且CF也没有发生氧化反应。在初始的磨合阶段,摩擦系数随着时间的延长而增大,然后逐渐趋于平稳,达到稳定阶段时,GCr15-PEEK摩擦副的摩擦系数在0.29~0.32之间,GCr15-PEEK/CF摩擦副的摩擦系数在0.27~0.30之间。随着载荷的增大,摩擦系数达到稳定阶段的时间变短。在轻载条件下,PEEK和PEEK/CF复合材料以黏着磨损为主;当载荷达到某一数值时,PEEK和PEEK/CF复合材料为黏着磨损和磨粒磨损共混的磨损形式。随着速度的增加,PEEK的磨损率先减小后增大,磨损机理由黏着磨损为主向黏着磨损和磨粒磨损共混磨损转变;PEEK/CF复合材料的磨损率随着速度的增加单调递减,磨损机理主要以黏着磨损为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳世伟
逄显娟
牛一旭
黄素玲
关键词:  聚醚醚酮  复合材料  摩擦磨损  导热性能    
Abstract: In this work, the composite material with polyether-ether-ketone as matrix and carbon fiber as reinforcement was used as the research object, and the surface was pretreated by grinding and polishing methods. The friction experiments of polyether-ether-ketone and its composites were carried out on a multifunctional friction and wear testing machine. The effects of load and velocity on the tribological property and wear mec-hanism of polyether-ether-ketone and its composites were systematically studied. The surface analysis and properties of the composites were measured by 3D morphometer, scanning electron microscope, X-ray diffractometer, infrared spectrometer and thermal conductivity analyzer. The results show that the crystallization state of PEEK and PEEK/CF is not changed in forming process, where PEEK does not undergo decomposition and cracking reaction, and CF does not undergo oxidation reaction. In the initial running stage, the friction coefficient increases with time and then gradually becomes stable. In stable stage, the friction coefficient of GCr15-PEEK friction pair is between 0.29—0.32 and that of GCr15-PEEK/CF friction pair is between 0.27—0.30. With the load increasing, the time of the friction coefficient to reach the stable stage becomes shorter. The wear mechanism of PEEK and PEEK/CF composite is mainly adhesive wear under light load conditions, which changes to adhesive wear and abrasive wear when the load reaches a certain value. With the velocity increasing, the wear rate of PEEK decreases firstly and then increases, and the wear mechanism of PEEK changes from adhesive wear to adhesive wear and abrasive wear. The wear rate of PEEK/CF composites decreases monotonically with velocity increasing, and the wear mechanism is mainly adhesive wear.
Key words:  polyether-ether-ketone    composite    frictional wear    heat conduction performance
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TB332  
基金资助: 国家自然科学基金(U1404504;U1804252);河南省自然科学基金(202300410141) ;河南省高等学校重点科研项目(20A430009);河南省科技攻关项目(182102210291)
通讯作者:  *xjpang2001@haust.edu.cn   
作者简介:  岳世伟,硕士, 2019年9月进入河南科技大学化工与制药学院,研究方向为特种高分子复合材料的摩擦磨损性能。逄显娟,硕士研究生导师,2010年7月毕业于中国科学院兰州化学物理研究所物理化学专业,获理学博士学位。现为河南科技大学化工与制药学院副教授、河南科技大学青年学术带头人。长期从事材料摩擦和表面工程方面的科学研究与教学工作,在Surface Coatings and Technology、 Surface an Interface Analysis、《摩擦学学报》等国内外重要期刊发表论文16篇。
引用本文:    
岳世伟, 逄显娟, 牛一旭, 黄素玲. 载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响[J]. 材料导报, 2022, 36(16): 21040271-7.
YUE Shiwei, PANG Xianjuan, NIU Yixu, HUANG Suling. Effects of Load and Velocity on the Friction Properties of Polyether-Ether-Ketone Composites. Materials Reports, 2022, 36(16): 21040271-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040271  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21040271
1 Ginzburg B M, Tochil'nikov D G, Bakhareva V E, et al. Russian Journal of Applied Chemistry, 2006, 79(5), 695.
2 Arthanareeswaran G, Mohan D, Raajenthiren M. Journal of Membrane Science, 2010, 350(1-2), 130.
3 Qi Y, Gong J, Yang D Y, et al. Materials Reports B: Research Papers, 2019, 33(10),1756(in Chinese).
祁渊, 龚俊, 杨东亚, 等. 材料导报:研究篇, 2019, 33(10),1756.
4 Lin G M, Xie G Y, Sui G X, et al. Composites Part B, Engineering, 2012, 43(1), 44.
5 Gan K, Liu H, Liu X J, et al. Ann. Materials Sci. Eng., 2015,2(1),1020.
6 Fang L C, Chen Q H, Huo S X, et al. Aging and Application of Synthetic Materials, 2019, 48(2), 115(in Chinese).
方良超, 陈奇海, 霍绍新, 等. 合成材料老化与应用, 2019, 48(2), 115.
7 Guo L, Qi H, Zhang G, et al. Composites Part A: Applied Science and Manufacturing, 2017, 97, 19.
8 Bijwe J, Sharma S, Sharma M, et al. Wear, 2013, 301(1-2), 810.
9 Zhang B, Huang W, Wang J, et al. Tribology International, 2013, 65, 138.
10 Qiao H B, Guo Q, Tian A G, et al. Tribology International, 2007, 40(1), 105.
11 Wang G K, Nie J K, Zhao W, et, al. Materials Reports, 2018, 32(S2),512(in Chinese).
王广克, 聂京凯, 赵伟,等. 材料导报, 2018, 32(S2),512.
12 Qiu X, He F, Li J, et al. Polymer Composites, 2014, 36(12), 2174.
13 Ma N, Sui G X. Journal of Composite Materials, 2013(13), 49(in Chinese).
马娜, 隋国鑫. 复合材料学报, 2013(13), 49.
14 Johansson P, Marklund P, Björling M, et al. Tribology International, 2021, 157(8), 1.
15 Yang G B, Chai S T, Xiong X J, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(2), 366.
16 He Y, Wu D, Zhou M, et al. Applied Surface Science,2020,506(25),1.
17 Xu L M, Zhao J F, Lei Y P, et, al. In:2006 Annual Meeting of Hubei Chemistry and Chemical Engineering Academy and Circular Economy Expert Forum. Wuhan, 2006, pp.321(in Chinese).
徐利敏, 赵剑锋, 雷玉平, 等. 湖北省化学化工学会2006年年会暨循环经济专家论坛. 武汉, 2006, pp.321.
18 Li N C, Xu B S, Wang H D, et, al.In: The 11th National Congress of Tribology. Lanzhou, 2013, pp.1(in Chinese).
李恩重, 徐滨士, 王海斗, 等. 第十一届全国摩擦学大会. 兰州, 2013, pp.1.
19 Fu H, Fu L, Zhang G L, et al. Journal of Materials Engineering and Performance, 2009, 18(7), 973.
20 Briscoe B J, Yao L H. Wear, 1986, 108, 357.
21 Wan L, Ma Y, Zhang Y Q, et al. Bearing, 2020(20), 22(in Chinese).
万磊, 马越, 张永乾, 等. 轴承, 2020(20), 22.
22 Wen S Z, Huang P, Tian Y, et al. Principles of tribology (5th edition), Tsinghua University Press, China, 2018(in Chinese).
温诗铸, 黄平, 田煜,等. 摩擦学原理(第五版), 清华大学出版社, 2018.
23 Panda J N, Bijwe J, Pandey R K. Composites Science and Technology, 2018, 167, 7.
24 Zhang Z, Breidt C, Chang L, et al. Composites Part A: Applied Science and Manufacturing, 2004, 35(12), 1385.
25 Wang Z, Gao D. Materials & Design, 2014, 53, 881.
26 Zheng B, Li M, Deng T, et al. Polymer Composites, 2019, 40(10), 3823.
27 Zhou X X. Study on tribological properties of plastic alloy bearing mate-rials. Master's Thesis, Tianjin University, China, 2015(in Chinese).
周小雪. 塑料合金轴承材料的摩擦学性能研究. 硕士学术论文,天津大学, 2015.
28 Lin L, Zhao Y, Hua C, et al. Tribology Letters, 2021, 69(2), 1.
29 Davim J P, Cardoso R. Wear, 2009, 266(7-8), 795.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[8] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[13] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[14] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[15] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed