Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20110101-8    https://doi.org/10.11896/cldb.20110101
  高分子与聚合物基复合材料 |
智能自修复材料研究进展
张仲1,2, 吕晓仁1, 于鹤龙2, 徐滨士2
1 沈阳工业大学机械工程学院,沈阳 110870
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Progress of Intelligent Self-healing Materials
ZHANG Zhong1,2, LYU Xiaoren1, YU Helong2, XU Binshi2
1 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 5190KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 机械零件的几种典型失效均源自于材料表面早期的微观损伤,在磨损、腐蚀、疲劳等工况条件下服役的零件往往因为材料表面局部损伤而导致整体失效,最终引起设备故障甚至造成灾难性后果。传统工程材料在化学成分与制备工艺确定后,其物相构成、组织结构、力学性能和使役行为随即确定,其难以满足机械零件极端工况、高可靠性和长寿命的新需求。
生物系统通过自主修复来应对自身损伤,帮助生物体恢复健康并延续生命。近年来,受生物体损伤自修复与自愈合过程的启发,在智能材料、先进表面技术、仿生科学和信息技术等交叉融合的基础上,发展形成的集损伤感知激励、状态智能诊断、在线修复愈合于一体的智能自修复材料与技术,为解决材料早期微观损伤的修复问题,提高工程系统的运行效率、可靠性和延长使用寿命提供了新的解决方案。
经过几十年的研究和发展,自修复材料已涵盖了混凝土、聚合物、陶瓷、金属等多个领域,自修复过程针对的损伤形式也覆盖了磨损、腐蚀、疲劳等多种失效模式。该研究领域涉及自修复材料设计、自修复体系构筑、自修复性能评价和自修复机理等多个方面,是多学科综合交叉的热点方向。
本文介绍了典型自修复材料体系的分类及基本原理,综述了针对磨损、疲劳、腐蚀三种典型损伤失效形式的自修复材料的研究进展,分析了该领域当前存在的问题及未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张仲
吕晓仁
于鹤龙
徐滨士
关键词:  自修复  磨损  疲劳  腐蚀  复合材料    
Abstract: Typical failures of mechanical parts are all derived from the early micro-damages on the surface of materials. Parts in service under the conditions of wear, corrosion, fatigue and other conditions often cause overall failure due to local damages to the materials surface, and eventually lead to equipment failure or even catastrophic consequences. The phase, microstructure, mechanical property and service behavior of traditio-nal engineering materials are determined after the chemical component and preparation technology are determined. And it is hard to satisfy the new requirements of extreme working conditions, high reliability and long service life.
The biological system can heal its own damage by self-repairing, and help organisms recover and extend life. In recent years, intelligent self-healing materials and technologies, inspired by the process of self-repairing and self-healing of biological damage, on the basis of the cross fusion of intelligent materials, advanced surface technology and bionic science and information technology, integrating damage perception and stimulation, state intelligent diagnosis and online repairing and healing, have been developed.And a new solution is provided to solve the problems of early micro-damage repair of materials and improve the operation efficiency, reliability and service life of engineering systems.
After decades of research and development, self-healing materials have covered many fields, such as concretes, polymers, ceramics, metals and so on. The damage modes targeted by the self-healing process also include wear, corrosion and fatigue. The research in this field involves the design of self-healing materials, the construction of self-healing system, the evaluation of self-healing performance and the mechanism of self-healing. It has become a hot research direction of interdisciplinary integration.
In this review, the classification and basic principle of typical self-healing materials systems are introduced. The research progress of self-hea-ling materials for three typical damage failure modes of wear, fatigue and corrosion are summarized, and the current problems and future development trends in this field are analyzed.
Key words:  self-healing    wear    fatigue    corrosion    composite materials
发布日期:  2022-04-07
ZTFLH:  TB381  
基金资助: 国家自然科学基金(52075544);国家重点基础研究发展规划项目(2017YFB0310703)
通讯作者:  helong.yu@163.com; xrlvsut@126.com   
作者简介:  张仲,2018年7月毕业于沈阳工业大学,获得工学学士学位。现为沈阳工业大学机械工程学院硕士研究生,在吕晓仁教授和于鹤龙副研究员的指导下进行研究,目前主要研究领域为金属自修复涂层的制备及其摩擦学行为研究。
吕晓仁,2001年毕业于中国矿业大学机电学院材料科学与工程专业,2007年于中国科学院金属研究所获得材料学专业博士学位。现为沈阳工业大学机械工程学院教授,博士研究生导师。全国液压气动标准化委员会密封装置技术委员会委员,全国液压气动国际标准化工作委员会委员,辽宁省机械工程学会摩擦会分会理事。主持或参与国家自然科学基金以及企业委托科研项目。目前已在国内外学术期刊上发表论文20余篇,出版学术专著1部,获批发明专利4项,实用新型专利1项,软件著作权1项。获机械工业联合会科技进步一等奖1项。
于鹤龙,2003年7月毕业于装甲兵工程学院车辆工程专业,2006年于装甲兵工程学院获得材料加工工程专业硕士学位,2017年于装甲兵工程学院获得材料科学与工程专业博士学位。现为中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室副主任、博士、副研究员。主要从事装备再制造、表面工程与军用新材料领域的研究工作。主持国家自然科学基金、国家重点研发计划课题、装备预研基金重点项目等国家和军队科研项目20余项,在国内外重要期刊发表学术论文80余篇,获授权国家发明专利15项,软件著作权8项,出版学术著作3部。
引用本文:    
张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
ZHANG Zhong, LYU Xiaoren, YU Helong, XU Binshi. Research Progress of Intelligent Self-healing Materials. Materials Reports, 2022, 36(7): 20110101-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110101  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20110101
1 Minkin J. Journal of the Franklin Institute, 1951, 252(1), 93.
2 Murphy E B, Wudl F. Progress in Polymer Science,2010,35(1-2),223.
3 White S R, Sottos N R, Geubelle P H, et al. Nature,2001,409(6822),794.
4 Blaiszik B J, Kramer S L B, Olugebefola S C, et al. Annual Review of Materials Research, 2010, 40(1), 179.
5 Li P, Zou T, Liu Y, et al. In: Proceedings of the 2015 International Conference on Mechatronics, Electronic, Industrial and Control Enginee-ring. Shenyang, 2015, pp. 427.
6 Qi H Z, Zhao Y H, Zhu K Y, et al. Progress in Chemistry, 2011, 23(12), 2560(in Chinese).
祁恒治, 赵蕴慧, 朱孔营, 等. 化学进展, 2011, 23(12), 2560.
7 Li Q, Liu C, Wen J, et al. Chinese Chemical Letters,2017,28(9),1857.
8 Li H Y, Zhang L B, Li J, et al. Chemical Industry and Engineering Progress, 2014, 33(1), 133.
李海燕, 张丽冰, 李杰, 等. 化工进展, 2014, 33(1), 133.
9 Wang Y, Li Y, Zhang Z, et al. Applied Ences, 2019, 9(19), 4098.
10 Kilicli V, Yan X J, Salowitz N, et al. Jom, 2018, 70(6), 846.
11 Manuel M V, Olson G B. In: Paper Presented at the 1st International Conference on Self-Healing Materials, Noordwijik aan Zee, the Netherlands, 2007, pp.18.
12 Lucci J M, Amano R S, Rohatgi P K. Heat and Mass Transfer, 2017, 53 (3), 825.
13 Lumley R, Morton A, Polmear I. Acta Materialia,2002,50(14),3597.
14 Ruzek A C. Synthesis and characterization of metallic systems with potential for self-healing. Ph.D. Thesis, University of Wisconsin-Milwaukee, USA, 2009.
15 Zhang J, Liu Y, Feng T, et al. Construction & Building Materials, 2017, 148(1), 610.
16 Huseien G F, Shah K W, Sam A R M. Journal of Building Engineering, 2019, 23, 155.
17 Zhou M, Lu W, Liu X, et al. Tribology International, 2018, 118, 196.
18 Derelioglu Z, Carabat A L, Song G M, et al. Journal of the European Ceramic Society, 2015, 35(16), 4507.
19 Nozahic F, Monceau D, Estournès C. Materials & Design,2016,94,444.
20 Boatemaa L, Bosch M, Farle A S, et al. Journal of the American Ceramic Society, 2018, 101(12), 5684.
21 Greil P. Advanced Engineering Materials, 2020, 22(9), 1901121.
22 Xu Y, Yu H L, Zhao Y, et al.China Surface Engineering, 2009, 22(3), 58(in Chinese).
许一, 于鹤龙, 赵阳, 等. 中国表面工程, 2009, 22(3), 58.
23 Yu H L, Xu Y, Shi P J, et al. Tribology, 2012, 32(5),500(in Chinese).
于鹤龙, 许一, 史佩京, 等. 摩擦学学报, 2012, 32(5), 500.
24 Yu H L, Xu Y, Shi P J, et al.Wear, 2013, 297(1-2), 802.
25 Bai Z N, Li G J, Zhao F Y, et al. Lubricants, 2020, 8(10), 93.
26 Yu H L, Wang H M, Yin Y L, et al. Tribology International, 2021, 153, 106562.
27 Shirani A, Gu J, Wei B, et al. Surface and Coatings Technology, 2019, 364, 273.
28 Zou J, Zhang G J, Zhang H, et al. Ceramics International, 2013, 39(1), 871.
29 Savchenko N L, Mirovoy Y A, Buyakov A S, et al. Wear, 2020, 446-447, 203204.
30 Zhai W, Lu W, Zhang P, et al. Applied Surface Science, 2018, 436, 1038.
31 Wu J, Wang X, Zhou L, et al. Industrial Lubrication and Tribology, 2018, 70(6), 1051.
32 Zhou H, Shi X, Liu X, et al. Journal of Materials Engineering and Performance, 2019, 28(2), 3381.
33 Abedini M, Ghasemi H M, Ahmadabadi M N. Materials Science and Technology, 2014, 26(3), 285.
34 Poormir M A, Khalili S M R, Eslami-Farsani R. Jom,2018,70(6),806.
35 Tanasi P, Hernández Santana M, Carretero-González J, et al. Polymer, 2019, 175, 15.
36 Cheng B, Lu X, Zhou J, et al. Dual Cross-Linked Acs Sustainable Che-mistry & Engineering, 2019, 7(4), 4443.
37 Wang X F, Zhang J H, Han R, et al. Journal of Cleaner Production, 2019, 235, 966.
38 Wei Z, Deng Y, Yu M, et al. Liquid Crystals, 2020, 21, 1.
39 Dry C. Ceram Trans, 1991, 16, 729.
40 Wang X, Huang Y, Huang Y, et al. Construction & Building Materials, 2019, 220, 90.
41 Li H M, Wu J, Zhang Y J. Applied Mechanics & Materials, 2013, 446-447, 1425.
42 Su Y, Feng J, Zhan Q, et al. Smart Materials & Structures, 2019, 28(7), 075041.
43 Xu H, Lian J, Gao M, et al. Materials, 2019, 12(14), 2313.
44 Feng J, Su Y, Qian C. Construction & Building Materials, 2019, 228, 116810.
45 Tittelboom K V, Belie N D, Muynck W D, et al. Cement & Concrete Research, 2010, 40(1), 157.
46 Muynck W D, Debrouwer D, Belie N D, et al. Cement & Concrete Research, 2008, 38(7), 1005.
47 Tavangarian F, Li G. Ceramics International, 2015, 41(2), 2828.
48 Fan W, Li W, Zhang Y, et al. Rsc Advances, 2017, 7(74), 46778.
49 Li J, Feng Q, Cui J, et al. Composite Science and Technology,2017,151(Otc.20),282.
50 Yabuki A, Urushihara W, Kinugasa J, et al. Materials and Corrosion, 2011, 62(10), 907.
51 Stankiewicz A, Szczygieł I, Szczygieł B. Journal of Materials Science, 2013, 48(23), 8041.
52 Xu J J, Yang T T, Yang Y, et al. Corrosion Science, 2018, 132, 161.
53 Wang C C, Li K Z, Shi X H, et al. Composites Part B,2017,125,181.
54 Walker L S, Corral E L. Journal of the American Ceramic, 2014, 97, 3004.
55 Yang H, Pei Y, Rao J, et al. Journal of Materials Chemistry, 2012, 22, 8304.
[1] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[2] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[3] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[4] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[5] 王好平, 张蒙祺, 莫继良. 盾构/TBM滚刀刀圈性能强化研究现状[J]. 材料导报, 2022, 36(7): 22010052-9.
[6] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[7] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[8] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[9] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[10] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[11] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[12] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[13] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[14] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[15] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed