Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20110126-6    https://doi.org/10.11896/cldb.20110126
  金属与金属基复合材料 |
Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响
汪勇1,2, 李光强1,2, 刘玉龙1,2, 高洋1,3, 郭小龙3, 朱诚意1,2
1 武汉科技大学耐火材料与冶金省部共建国家重点实验室,武汉 430081
2 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081
3 宝钢中央研究院,上海 200000
Effect of Nb Microalloying on Precipitates, Microstructure and Texture of Normalized Bands of Grain Oriented Silicon Steel
WANG Yong1,2, LI Guangqiang1,2, LIU Yulong1,2, GAO Yang1,3, GUO Xiaolong3, ZHU Chengyi1,2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
3 Baosteel Central Research Institute, Shanghai 200000, China
下载:  全 文 ( PDF ) ( 6133KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 取向硅钢具有高磁感、低铁损的优异性能,被广泛应用于制作变压器的铁芯,其最大的特点是通过二次再结晶获得锋锐的Goss织构。在实际生产中,为降低板坯的再加热温度,将Nb添加到取向硅钢中。本工作研究了微量(0%~0.025 0%,质量分数,下同)铌(Nb)对取向硅钢常化板析出物、组织和织构的影响。研究结果表明:取向硅钢常化板(不含铌)中的析出物主要是MnS和MnS与AlN的复合析出物,Nb主要以Nb(C,N)形式析出,常化板(含铌)中主要有MnS、AlN和Nb(C,N)的复合析出物。由于Nb(C,N)具有较强的抑制效果,添加0.009 0%的Nb可以达到较好的组织细化效果;但继续添加Nb,组织变化不大。含Nb取向硅钢常化板的织构主要是{001}〈110〉织构和较弱的{110}〈001〉织构,Nb含量对常化板织构的影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪勇
李光强
刘玉龙
高洋
郭小龙
朱诚意
关键词:  Nb  取向硅钢  析出物  组织  织构    
Abstract: Grain oriented silicon steels are widely used as the core materials for transformers due to the high magnetic permeability and low core loss, which are charactered by the sharp Goss texture obtained by secondary recrystallization annealing. In order to reduce the slab reheating temperature, niobium is added into grain oriented silicon steel. In this study, four normalized bands of grain-oriented silicon steels with different Nb content (0wt%—0.025 0wt%) were prepared, a detailed study of the precipitates, microstructure, and texture in normalized bands were carried out by various analysis methods. The results show that the precipitates in normalized bands (Nb-free steel) are MnS and composite precipitates of MnS and AlN. Nb is mainly precipitated in the form of Nb(C,N). And the main precipitates in normalized bands (Nb-bearing steel) are composite precipitates of MnS, AlN and Nb(C,N). Due to the strong inhibition effect of Nb(C,N), finer microstructure is obtained in steel with 0.009 0%. However, the effect of Nb addition on microstructure is not obvious when the content is higher than 0.009 0%. And the main textures in normalized bands are {001}〈110〉 and {110}〈001〉, the effect of Nb content on texture is not obvious.
Key words:  Nb    grain oriented silicon steel    precipitates    microstructure    texture
发布日期:  2022-04-07
ZTFLH:  TG142.7  
基金资助: 国家自然科学基金(51674180)
通讯作者:  zhchyhsy@wust.edu.cn   
作者简介:  汪勇,2021年6月毕业于武汉科技大学,获冶金工程专业博士学位。研究方向为钢的精炼及夹杂物控制。
朱诚意,2010年毕业于武汉科技大学,获钢铁冶金博士学位,现为武汉科技大学教授、博士研究生导师。主持国家自然科学基金等国家级、省部级和企业委托项目10余项。研究方向为特殊钢精炼及其组织结构调控;冶金及材料制备过程物理化学;金属材料表面改性处理。累计发表冶金和材料领域研究论文100多篇,合作出版教材2部。
引用本文:    
汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
WANG Yong, LI Guangqiang, LIU Yulong, GAO Yang, GUO Xiaolong, ZHU Chengyi. Effect of Nb Microalloying on Precipitates, Microstructure and Texture of Normalized Bands of Grain Oriented Silicon Steel. Materials Reports, 2022, 36(7): 20110126-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110126  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20110126
1 He Z Z, Zhao Y, Luo H W. Electrical steel,Metallurgical Industry Press, China, 2012,pp.1(in Chinese).
何忠治, 赵宇, 罗海文. 电工钢, 冶金工业出版社, 2012,pp. 1
2 Matsuo M. ISIJ International, 1989, 29(10), 809.
3 Atake M, Barnett M, Hutchinson B, et al. Acta Materialia, 2015, 96, 410.
4 Liu H, Yao S, Sun Y, et al. Materials Characterization,2015,106,273.
5 Heo N H. Metallurgical and Materials Transactions A, 2005, 36(11), 3251.
6 Imamura T, Shingaki Y, Hayakawa Y, et al. Metallurgical and Materials Transactions A, 2013, 44(4), 1785.
7 Kubota T, Fujikura M, Ushigami Y, et al. Journal of Magnetism and Magnetic Materials, 2000, 215, 69.
8 Obara T, Takeuchi H, Takamiya T, et al. Journal of Materials Enginee-ring & Performance, 1993, 2(2), 205.
9 Gao Y, Xu G, Guo X, et al. Journal of Magnetism and Magnetic Mate-rials, 2019, 476, 428.
10 Cheng X H, Zhu C Y, Li G Q, et al. Materials Reports, 2016, 30(Z1), 94(in Chinese).
陈先红, 朱诚意, 李光强,等. 材料导报, 2016, 30(Z1), 94.
11 Takamiya T, Furukimi O. Tetsu-to-Hagane, 2014, 100(11), 1413.
12 Sakai T, Shimazu T, Chikuma K, et al. Tetsu-to-Hagane, 1984, 70(15), 2049.
13 Feng Y L, Yin X P, Zhang S J. Hot Working Technology, 2015, 44(18), 89(in Chinese).
冯运莉, 尹晓盼, 张思佳. 热加工工艺, 2015, 44(18), 89.
14 Zhang Y, Fu Y L, Wang R W, et al. China Metallurgy, 2008(7), 17(in Chinese).
张颖, 傅耘力, 汪汝武, 等.中国冶金, 2008(7),17.
15 Hulka K, Vlad C M, Doniga A, et al. Steel Research International, 2002, 73(10), 453.
16 Feng Y, Guo J, Li J, et al. Journal of Magnetism and Magnetic Mate-rials, 2017, 426, 89.
17 Li Y, Feng Y L, Wang K L, et al. Heat Treatment of Metals, 2018, 43(5), 6(in Chinese).
李洋, 冯运莉, 王凯琳, 等. 金属热处理, 2018, 43(5), 6.
18 Iwayama K, Haratani T. Journal of Magnetism & Magnetic Materials, 1980, 19(1-3), 15.
19 Klinkenberg C,Hulka K, Bleck W. Steel Research International, 2004, 75(11), 744.
20 Ainslie N G, Seybolt A U. ISIJ International, 1960, 194, 341.
21 Sawamura H, Mori T. Tetsu-to-Hagane, 1955, 41(10), 1082.
22 Schneider J, Li G, Franke A, et al. Journal of Magnetism and Magnetic Materials, 2017, 424, 26.
23 Smith C S. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1948, 175, 15.
24 Palmiere E J, Garcia C I, Deardo A J. Metallurgical and Materials Transactions A, 1996, 27(4), 951.
25 Goto H, Miyazawa K, Tanaka K. ISIJ International, 1995, 35(3), 286.
26 Shin S M, Birosca S, Chang S K, et al. Journal of Microscopy, 2008, 230(3), 414.
27 Wang Y, Zhu C, Li G, et al. Materials, 2020, 13(23), 5581.
[1] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[2] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[3] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[4] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[5] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[6] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[7] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[8] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[9] 孙文, 闫秋艳, 苏超, 栾世方, 殷敬华. 高分子医用组织胶粘剂的应用与研究进展[J]. 材料导报, 2022, 36(3): 21090149-17.
[10] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[11] 汤荣华, 冯曰海, 刘思余, 陈琪. 双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究[J]. 材料导报, 2022, 36(3): 20060143-5.
[12] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[13] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[14] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[15] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed