Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 21090149-17    https://doi.org/10.11896/cldb.21090149
  生物医用材料 |
高分子医用组织胶粘剂的应用与研究进展
孙文1,2, 闫秋艳1, 苏超3, 栾世方1,2, 殷敬华1
1 中国科学院长春应用化学研究所,长春 130022
2 中国科学技术大学应用化学与工程学院,合肥 230026
3 威海市科技创新发展中心,山东 威海 264200
The Applications and Research Progress of Polymeric Medical Tissue Adhesives
SUN Wen1,2, YAN Qiuyan1, SU Chao3, LUAN Shifang1,2, YIN Jinghua1
1 Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
2 School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
3 Weihai Science and Technology Innovation Development Center, Weihai 264200, Shandong, China
下载:  全 文 ( PDF ) ( 20714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高分子医用组织胶粘剂由于具有优异的性能,受到医疗领域的广泛关注,适用于轻微至危及生命的各种组织损伤的闭合与再生。与传统的伤口缝合方法(缝合线和缝合钉)相比,胶粘剂使用方便、闭合伤口速度快、对组织的损伤小。目前,高分子医用胶粘剂以多种形式用于伤口处理,如止血剂、粘合剂和密封剂。尽管组织胶粘剂目前应用广泛,但仍面临一些限制和未解决的挑战(例如较弱的湿态粘附强度和缺乏生物功能等),这限制了它们的使用,为未来的改进留下了充足的空间。基于组织胶粘剂界面的化学和物理特性、组织粘连的基本机制以及特定临床应用的要求,本文总结了组织胶粘剂的基本设计原则及湿态粘附机制,基于组织特异性的考虑,介绍了该领域的最新研究进展,并展望了未来组织胶粘剂的潜在功能和临床需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文
闫秋艳
苏超
栾世方
殷敬华
关键词:  组织胶粘剂  粘附机制  湿态粘附  组织修复    
Abstract: The polymer medical tissue adhesive has received extensive attention in the medical field due to its excellent performance, and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Polymeric tissue adhesives can provide versatile materials for wound management, and can be used as hemostatic agents, adhesives and sealants. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak wet adhesion strength and poor biological function). Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discussed the basic design principles and wet adhesion mechanism of tissue adhesives. Based on the consideration of tissue specificity, we introduced the latest research progress in this field and looked forward to the potential functions and clinical needs of tissue adhesives in the future, hoping to provide a valuable reference for the progress in the field of tissue adhesive.
Key words:  tissue adhesive    adhesion mechanism    wet adhesion    tissue repair
发布日期:  2022-02-10
ZTFLH:  TB324  
基金资助: 国家重点研发计划(2021YFC2101700);中国科学院-威高集团高新技术研发计划
通讯作者:  qyyan@ciac.ac.cn;yinjh@ciac.ac.cn   
作者简介:  孙文,2018年6月毕业于海南大学,获得学士学位。现为中国科学院长春应用化学研究所博士研究生,在栾世方研究员的指导下进行研究。目前主要研究领域为医用软组织胶。
闫秋艳,中国科学院长春应用化学研究所助理研究员。2012年6月本科毕业于商丘师范学院生命科学学院,2015年6月硕士毕业于吉林大学生命科学学院,2019年1月在中国科学院长春应用化学研究所分析专业取得博士学位。主要从事组织粘合剂和细菌粘附机制的研究工作。
殷敬华,威高集团总工程师,中国科学院长春应用化学研究所研究员、博士研究生导师。1970年毕业于南京化工大学,1981年12月于中国科学院长春应用化学研究所获理学硕士学位。曾任中国生物材料学会常务理事、中国材料学会高分子材料分会副理事长、中国科学院长春应用化学研究所学术委员会主任。主要研究领域:生物医用高分子材料与医疗器械。发表研究论文280多篇,撰写专著2部,获得国家技术发明二等奖、国家科技进步二等奖。
引用本文:    
孙文, 闫秋艳, 苏超, 栾世方, 殷敬华. 高分子医用组织胶粘剂的应用与研究进展[J]. 材料导报, 2022, 36(3): 21090149-17.
SUN Wen, YAN Qiuyan, SU Chao, LUAN Shifang, YIN Jinghua. The Applications and Research Progress of Polymeric Medical Tissue Adhesives. Materials Reports, 2022, 36(3): 21090149-17.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090149  或          http://www.mater-rep.com/CN/Y2022/V36/I3/21090149
1 Gurtner G C, Werner S, Barrandon Y, et al. Nature, 2008, 453 (7193), 314.
2 Nam S, Mooney D. Chemical Reviews, 2021,121 (18), 11336.
3 Xiong Y, Zhang X, Ma X, et al. Polymer Chemistry, 2021, 12,3721.
4 Yue K, Trujillo-de S G, Alvarez M M, et al. Biomaterials, 2015, 73, 254.
5 Gaca K Z, Sefcik J. Journal of Colloid and Interface Science, 2013, 406, 51.
6 Hoang T, Lee Y, Le T P, et al. Journal of Industrial and Engineering Chemistry, 2019, 78, 34.
7 Spotnitz W D. ISRN Surgery, 2014, 2014, 203943.
8 Toro A, Mannino M, Reale G, et al. Journal of Blood Medicine, 2011, 2, 31.
9 Qu J, Zhao X, Liang Y, et al. Biomaterials, 2018, 183, 185.
10 Zou Y, Zhang Y F, Ge J Z, et al. China Adhesives, 2019, 28(8), 6(in Chinese).
邹洋, 张彦粉, 葛纪者, 等. 中国胶粘剂, 2019, 28(8), 6.
11 Balakrishnan B, Soman D, Payanam U, et al. Acta Biomaterialia, 2017, 53, 343.
12 Hyon S H, Nakajima N, Sugai H, et al. Journal of Biomedical Materials Research A, 2014, 102 (8), 2511.
13 Zhou D, Li S, Pei M, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18225.
14 Shin J, Choi S, Kim J H, et al. Advanced Functional Materials, 2019, 29(49), 1903863.
15 Van Hoorick J, Gruber P, Markovic M, et al. Biomacromolecules, 2017, 18(10), 3260.
16 Balkenende D W R, Winkler S M, Li Y, et al. ACS Macro Letters. 2020, 9(10), 1439.
17 Yin X, Hao Y, Lu Y, et al. Advanced Functional Materials, 2021, 31(41), 2105614.
18 Stam M A W, Mulder C L J, Consten E C J, et al. Annals of Surgical Innovation and Research, 2014, 8, 6.
19 Yeon Y K, Park H S, Lee J M, et al. Journal of Biomaterials Science, Polymer Edition, 2018, 29 (7-9), 894.
20 Manavitehrani I, Fathi A, Badr H, et al. Polymers, 2016, 8(1), 20.
21 Liu Y, Meng H, Qian Z, et al. Angewandte Chemie International Edtion in English, 2017, 56(15), 4224.
22 Chen J, Wang D, Wang L H, et al. Advanced Materials, 2020, 32(43), 2001628.
23 Cui C, Wu T, Gao F, et al. Advanced Functional Materials, 2018, 28(42), 1804925.
24 Palacio M L, Bhushan B. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1967), 2321.
25 Zhang W, Wang R, Sun Z, et al. Chemical Society Reviews, 2020, 49 (2), 433.
26 Saiz-Poseu J, Mancebo-Aracil J, Nador F, et al. Angewandte Chemie International Edtion in English, 2019, 58 (3), 696.
27 Balkenende D W R, Winkler S M, Messersmith P B. European Polymer Journal, 2019, 116, 134.
28 Bouten P J M, Zonjee M, Bender J, et al. Progress in Polymer Science, 2014, 39(7), 1375.
29 Ghobril C, Grinstaff M W. Chemical Society Reviews, 2015, 44(7), 1820.
30 Zhang L, Liu M, Zhang Y, et al. Biomacromolecules, 2020, 21(10), 3966.
31 Yang J, Cohen S M A, Kamperman M. Chemical Society Reviews, 2014, 43(24), 8271.
32 Lee H A, Park E, Lee H. Advanced Materials, 2020, 32(35), 1907505.
33 Yuk H, Varela C E, Nabzdyk C S, et al. Nature, 2019, 575(7781), 169.
34 Bu Y, Zhang L, Sun G, et al. Advanced Materials, 2019, 31(28), 1901580.
35 Cosgrove G R, Delashaw J B, Grotenhuis J A, et al. Journal of Neurosurgery, 2007, 106, 52.
36 Korde J M, Kandasubramanian B. Biomaterials Science, 2018, 6(7), 1691.
37 Bhagat V, Becker M L. Biomacromolecules, 2017, 18(10), 3009.
38 Wang D A, Varghese S, Sharma B, et al. Nature Materials, 2007, 6(5), 385.
39 Li L, Wang N, Jin X, et al. Biomaterials, 2014, 35 (12), 3903.
40 Xu J, Liu Y, Hsu S H. Molecules, 2019, 24(16), 3005.
41 Hong S, Pirovich D, Kilcoyne A, et al. Advanced Materials, 2016, 28(39), 8675.
42 Laulicht B, Mancini A, Geman N, et al. Macromolecular Bioscience, 2012, 12 (11), 1555.
43 Nishio F, Hirata I, Nakamae K, et al. International Journal of Adhesion and Adhesives, 2021, 104, 102746.
44 Su X, Luo Y, Tian Z, et al. Materials Horizons, 2020, 7, 2651.
45 Wang J, Wang L, Wu C, et al. ACS Applied Materials & Interfaces, 2020, 12(41), 46816.
46 Wang P Y. Nature, 1974, 249, 367.
47 Matsuda M, Ueno M, Endo Y, et al. Colloids and Surfaces B: Biointerfaces, 2012, 91, 48.
48 Cui C, Fan C, Wu Y, et al. Advanced Materials, 2019, 31(49), 1905761.
49 Kaur S, Narayanan A, Dalvi S, et al. ACS Central Science,2018, 4(10), 1420.
50 Yang J, Bai R, Chen B, et al. Advanced Functional Materials, 2019, 30(2), 1901693.
51 Yang S Y, O'Cearbhaill E D, Sisk G C, et al. Nature Communications, 2013, 4, 1702.
52 Yuk H, Wu J, Sarrafian T L, et al. Nature Biomedical Engineering, 2021, 5, 1131.
53 Chen X, Yuk H, Wu J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (27), 15497.
54 He J, Zhang Z, Yang Y, et al. Nano-Micro Letters, 2021, 13(1), 80.
55 Liu, C, Liu X, Liu C, et al. Biomaterials, 2019, 205, 23.
56 Taboada G M, Yang K, Pereira M J N, et al. Nature Reviews Materials, 2020, 5(4), 310.
57 Levental I, Georges P C, Janmey P A. Soft Matter, 2007, 3(3), 299.
58 Swift J, Ivanovska I L, Buxboim A, et al. Science, 2013, 341(6149), 1240104.
59 Guimarães C F, Gasperini L, Marques A P, et al. Nature Reviews Materials, 2020, 5(5), 351.
60 Yuk H, Lu B, Zhao X. Chemical Society Reviews, 2019, 48(6), 1642.
61 Blackburn S L, Smyth M D. Journal of Neurosurgery, 2007, 106, 302.
62 Barrett D G, Bushnell G G, Messersmith P B. Advanced Healthcare Materials, 2013, 2(5), 745.
63 Mouthuy P A, Snelling S J B, Dakin S G, et al. Biomaterials, 2016, 109, 55.
64 Raja P R. Reviews of Adhesion and Adhesives, 2016, 4(4), 398.
65 Pascual G, Sotomayor S, Rodriguez M, et al. PLoS One, 2016, 11(6), 0157920.
66 Wang B, Lee J S, Jeon Y S, et al. Polymer International, 2018, 67(5), 557.
67 Zhang H, Zhao T, Newland B, et al. Progress in Polymer Science, 2018, 78, 47.
68 Waite J H, Tanzer M L. Science, 1981, 212, 1038.
69 Geng H M, Cui J W, Hao J C. Acta Chimica Sinica, 2020, 78(2), 105(in Chinese).
耿慧敏, 崔基炜, 郝京诚. 化学学报, 2020, 78(2), 105.
70 Yu J, Kan Y, Rapp M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39), 15680.
71 Ahn B K. Journal of the American Chemical Society, 2017, 139(30), 10166.
72 Harrington M J, Masic A, Holten-Andersen N, et al. Science, 2010, 328(5975), 216.
73 Wang L, Zhang X, Yang K, et al. Advanced Functional Materials, 2019, 30(1), 1904156.
74 Narkar A R, Barker B, Clisch M, et al. Chemistry of Materials, 2016, 28(15), 5432.
75 Zhao X, Pei D, Yang Y, et al. Advanced Functional Materials, 2021, 31(18), 2009442.
76 Liu H, Qu X, Tan H, et al. Acta Biomaterialia, 2019, 88, 181.
77 Yang Z, Huang R, Zheng B, et al. Advanced Science, 2021, 8(8), 2003627.
78 Wei W, Petrone L, Tan Y, et al. Advanced Functional Materials, 2016, 26(20), 3496.
79 Maier G P, Rapp M V, Waite J H, et al. Science, 2015, 349(6248), 628.
80 Wang R, Li W. Theoretical and Applied Fracture Mechanics, 2017, 90, 1.
81 Seo S, Das S, Zalicki P J, et al. Journal of the American Chemical Society, 2015, 137(29), 9214.
82 Wei W, Tan Y, Martinez R, et al. Acta Biomaterialia, 2014, 10(4), 1663.
83 Ahn B K, Das S, Linstadt R, et al. Nature Communications, 2015, 6, 8663.
84 Kim S, Yoo H Y, Huang J, et al. ACS Nano, 2017, 11(7), 6764.
85 Tiu B D B, Delparastan P, Ney M R, et al. Angewandte Chemie International Edition in English, 2020, 59(38), 16616.
86 Liang S, Zhang Y, Wang H, et al. Advanced Materials, 2018, 3(23), 1704235.
87 Wang Y, Dong J, Jin J, et al. Macromolecular Chemistry and Physics, 2021, 222(8), 2000461.
88 Fan H, Wang J, Tao Z, et al. Nature Communications, 2019, 10(1), 5127.
89 Liu X, Zhang Q, Gao G. Advanced Functional Materials, 2017, 27(44), 1703132.
90 Liu X, Zhang Q, Duan L, et al. Advanced Functional Materials, 2019, 29(17), 1900450.
91 Cui C, Liu W. Progress in Polymer Science, 2021, 116,101388.
92 Pinnaratip R, Bhuiyan M S A, Meyers K, et al. Advanced Healthcare Materials, 2019, 8(11), 1801568.
93 Ma Y, Yao J, Liu Q, et al. Advanced Functional Materials, 2020, 30(39), 2001820.
94 Steck J, Kim J, Yang J, et al. Extreme Mechanics Letters, 2020, 39, 100803.
95 Li J, Celiz A D, Yang J, et al. Science, 2017, 357(6349), 378.
96 Yang J, Bai R, Suo Z. Advanced Materials, 2018, 30(25), 1800671.
97 Hou Y, Deng X, Xie C. Smart Materials in Medicine, 2020, 1, 77.
98 Rao P, Sun T L, Chen L, et al. Advanced Materials, 2018, 30(32), 1801884.
99 Ma Y, Ma S, Wu Y, et al. Advanced Materials, 2018, 30(30), 1801595.
100 Jiang H X, Yue W H. Medical Equipment, 2017, 30(13), 199(in Chinese).
姜洪霞, 岳卫华. 医疗装备, 2017, 30(13), 199.
101 Chen G, Yu Y, Wu X, et al. Advanced Functional Materials, 2018, 28(33), 1801386.
102 Song W, Ko J, Choi Y H, et al. APL Bioengineering, 2021, 5(2), 021502.
103 Peng X, Xu X, Deng Y, et al. Advanced Functional Materials, 2021, 31(33), 2102583.
104 Kim K R,Koh J H,Yun M Y, et al. Science Advances, 2021, 7, eabc9992.
105 Jones A M, Miguel L S. Journal of Wound Care, 2006, 15(2), 65.
106 Chen T, Chen Y, Rehman H U, et al. ACS Applied Materials & Interfaces, 2018, 10(39), 33523.
107 Han L, Yan L, Wang K, et al. NPG Asia Materials, 2017, 9, e372.
108 Guo J, Sun W, Kim J P, et al. Acta Biomaterialia, 2018, 72, 35.
109 Hou B, Xie S L. Lingnan Modern Clinics in Surgery, 2016, 16(1), 115(in Chinese).
侯彪, 谢松林. 岭南现代临床外科, 2016, 16(1), 115.
110 Ma Z, Bao G, Li J. Advanced Materials, 2021, 33(24), 2007663.
111 Hahn M S, McHale M K, Wang E, et al. Annals of Biomedical Enginee-ring, 2007, 35(2), 190.
112 Butany J, Collins M J. Journal of Clinical Pathology, 2005, 58(2), 113.
113 Hong Y, Zhou F, Hua Y, et al. Nature Communications, 2019, 10(1), 2060.
114 Wang R, Li J, Chen W, et al. Advanced Functional Materials, 2017, 27(8), 1604894.
115 Lequaglie C, Giudice G, Marasco R, et al. Journal of Cardiothoracic Surgery, 2012, 7, 106.
116 Cruces P, Erranz B, Lillo F, et al. BMJ Open Respiratory Research, 2019, 6(1), 000423.
117 Fuller C. Journal of Cardiothoracic Surgery, 2013, 8, 90.
118 Assmann A, Vegh A, Ghasemi-Rad M, et al. Biomaterials, 2017, 140, 115.
119 Buchs N C, Gervaz P, Secic M, et al. International Journal of Colorectal Disease, 2008, 23(3), 265.
120 Blumetti J, Abcarian H. World Journal of Gastrointestinal Surgery, 2015, 7(12), 378.
121 Cao K. Chinese and Foreign Medical Research, 2021, 19(1), 70(in Chinese).
曹宽. 中外医学研究, 2021, 19(1), 70.
122 Shazly T M, Artzi N, Boehning F, et al. Biomaterials, 2008, 29(35), 4584.
123 Xu X, Xia X, Zhang K, et al. Science Translational Medicine, 2020, 12(558), eaba8014.
[1] 陈一宁, 但卫华, 但年华. 脱细胞真皮基质的改性及应用概述[J]. 《材料导报》期刊社, 2018, 32(13): 2311-2319.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed