Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21020008-7    https://doi.org/10.11896/cldb.21020008
  金属与金属基复合材料 |
升温速率对AA2060铝锂合金中间形变热处理微观组织的影响
李朝阳1,2, 黄光杰1, 曹玲飞1,3, 曹宇1, 林林2
1 重庆大学材料与科学工程学院,重庆 400044
2 西南铝业(集团)有限责任公司,重庆 401326
3 重庆大学电子显微镜中心,重庆 400044
Effect of Heating Rate on Microstructural Evolution During Thermo-Mechanical Treatment Processing in AA2060 Alloy
LI Chaoyang1,2, HUANG Guangjie1, CAO Lingfei1,3, CAO Yu1, LIN Lin2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Southwest Aluminum (Group) Co., Ltd., Chongqing 401326, China
3 Electron Microscopy Center, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 8673KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对双级均匀化后随炉冷AA2060铝锂合金铸块进行5道次轧制变形,轧制温度在400 ℃,得到了预变形量50%的样品。再对预变形量50%的样品采用 Gleeble-3800 热模拟试验机进行温度为 450 ℃、应变速率为0.01 s-1的热模拟,并分别以5 ℃/s、10 ℃/s、20 ℃/s的升温速率将其加热到变形温度。结合透射电子显微镜(TEM)、电子背散射衍射(EBSD) 和背散射电子像(BSE)表征不同升温速率下析出相演变规律及再结晶微观组织结构。研究结果表明:升温速率降低将导致升温过程中θ′(Al2Cu)相的析出量和尺寸增大,而流变应力及加工硬化率相应降低。热变形过程中连续再结晶(CDRX)、不连续再结晶(DDRX)、亚动态再结晶(MDRX)均有发生,其中CDRX和MDRX是该工艺路线过程中的主要再结晶机制。另外,随着升温速率的增加,CDRX和MDRX的比例降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李朝阳
黄光杰
曹玲飞
曹宇
林林
关键词:  AA2060铝锂合金  中间形变热处理  升温速率  再结晶  组织演变    
Abstract: The samples of AA2060 alloy were two-stage homogenized, then cooled in the furnace, and subsequently deformed through the five pass rol-ling at 400 ℃, with 50% pre-rolled samples obtained finally. The 50% pre-rolled samples were tested by Gleeble-3800 thermal simulation machine at 450 ℃ at strain rate of 0.01 s-1, and the hot compression of samples were carried out with heating rate of 5 ℃/s, 10 ℃/s and 20 ℃/s, respectively. The microstructure evolution of precipitates and recrystallization under different heating rates were characterized by transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and backscattered electron image (BSE). According to the results, the precipitation quantity and size of the θ′(Al2Cu) phase increase with the heating rate decreasing, while the strain stress and strain har-dening rate decrease. Continuous recrystallization (CDRX), discontinuous recrystallization (DDRX), and sub-dynamic recrystallization (MDRX) occur du-ring hot deformation, in which CDRX and MDRX are the mainly recrystallization mechanisms during the ITMP process. Moreover, with the increase of heating rate, the proportion of CDRX and MDRX decreases.
Key words:  AA2060 alloy    intermediate thermo-mechanical treatment process(ITMP)    heating rate    recrystallization    microstructure evolution
发布日期:  2022-04-07
ZTFLH:  TG335.5  
基金资助: 国家自然科学基金资助项目 (51421001);中央高校经费资助项目(2020CDJDCL001)
通讯作者:  gjhuang@cqu.edu.cn   
作者简介:  李朝阳,自2015年9月起在重庆大学材料科学与工程学院攻读博士学位。申请国家发明专利4项,发表SCI论文3篇,主要从事高性能铝锂合金的变形工艺设计与开发。
黄光杰,重庆大学材料科学与工程学院,教授,博士研究生导师,先后于1992年、2002年在重庆大学获得硕士和博士学位。于2003—2004年在加拿大McGill作访问学者,研究领域为金属塑性变形、再结晶与织构控制、镁合金板材加工技术、铝合金新材料与新工艺、先进轻合金成形技术,并已发表125篇SCI论文,主持国家和省部级项目12项,横向科研项目15项。
引用本文:    
李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
LI Chaoyang, HUANG Guangjie, CAO Lingfei, CAO Yu, LIN Lin. Effect of Heating Rate on Microstructural Evolution During Thermo-Mechanical Treatment Processing in AA2060 Alloy. Materials Reports, 2022, 36(7): 21020008-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020008  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21020008
1 Wu X L,Liu M,Zang J X,et al. Materials Reports,2016,30(S2),571(in Chinese).
吴秀亮,刘铭,臧金鑫,等. 材料导报,2016,30(S2),571.
2 Huo H Q,Hao W X,Geng G H, et al. Vacuum Cryogenics,2005(2),63(in Chinese).
霍红庆,郝维新,耿桂宏,等. 真空与低温,2005(2),63.
3 Karayan A I, Jata K, Velez M,et al. Journal of Alloys and Compounds,2016,657,546.
4 Di R E, Conserva M, Buratti M, et al. Metallurgical Transactions, 1973,4,1133.
5 Di R E, Conserva M, Buratti M,et al. Materials Science and Enginee-ring, 1974,14, 23.
6 Segal V M. Journal of Materials Processing Technology,2016,231,50.
7 Waldman J, Sulinski H, Markus H. Metallurgical Transactions,1974,5,573.
8 Wert J A, Paton N E, Hamilton C H, et al. Metallurgical Transactions A,1981,12A,1267.
9 Wei J F, Ming H, Zhang C. Journal of Northwestern Polytechnical University, 1995,4,553.
10 An L H, Cai Y, Liu W,et al. Transactions of Nonferrous Metals Society of China, 2012,22, s370.
11 Ye L Y, Zhang X M, Liu Y W, et al. Materials Science and Technology, 2011, 27, 125.
12 Gao C, Luan Y, Yu J C, et al. Transactions of Nonferrous Metals Society of China. 2014,24(7),2196.
13 Bampton C C,Wert J A, Mahoney M W. Metallurgical Transactions A,1982,13A,193.
14 Wang X F, Guo M X, Cao L Y,et al. Materials Science and Engineering: A,2015,621,8.
15 Shen F H, Wang B, Yi D Q, et al. Materials and Design,2016,104,116.
16 Huo W T, Sun T T, Hou L G,et al. Materials Characterization,2020,167,110535.
17 Choi S G, Jeon J H, Seo N H,et al. Metals and Materials International,2021,27,449.
18 Saeed K M, Mohsen K, Roland L. Materials Characterization,2017,127,317.
19 Liu W C, Li Z, Man C S. Materials Science and Engineering A,2008,478,173.
20 Lu G, Wang J J, Liu Y J,et al. Materials Science and Engineering: A,2020,791,139604.
21 Wang S C,Starink M J. International Materials Reviews,2005,50,193.
22 Poliak E I, Jonas J J. ISIJ International, 2007, 43,684.
23 Ruggles T J,Fullwood D T. Ultramicroscopy,2013,133,8.
24 Shimizu I. Journal of Structural Geology,2008,30,899
25 Lin Y C, Wu X Y, Chen X M,et al. Journal of Alloys and Compounds, 2015, 640, 101.
26 Zhao J, Deng Y, Tan J,et al. Materials Science and Engineering: A, 2018,734, 120.
27 Yang Y, Xiong X, Su J,et al. Journal of Alloys and Compounds, 2018,750, 696.
28 Cao Y, Di H S, Zhang J Q,et al. Materials Science and Engineering A,2013,585, 71.
29 Mandal S, Bhaduri A K, Subramanya S V. Metallurgical & Materials Transactions A,2011,42,1062.
30 Maghsoudi M H, Zarei-Hanzaki A, Changizian P,et al. Materials and Design, 2014,57, 487.
31 Wang X Y, Jiang J T, Li G A,et al. Journal of Alloys and Compounds, 2020,815, 152469.
32 Godfrey A, Cao W Q, Liu Q, et al. Metallurgical & Materials Transactions A,2005,36, 2371.
33 Yan L,Jiang D M,Li B Q, et al. Materials and Design,2014,57,79.
[1] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[2] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[3] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[4] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[5] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[6] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[7] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[8] 王丽娜, 何承绪, 孟利, 杨佳欣, 张宁, 郭小龙, 胡卓超, 李国保, 王福明. 升温速率对冷轧超薄取向硅钢再结晶行为的影响[J]. 材料导报, 2021, 35(18): 18170-18175.
[9] 赵帆, 何颖, 张志豪. 消除7136铝合金固溶热处理粗晶环的新方法:应变固溶[J]. 材料导报, 2021, 35(14): 14079-14083.
[10] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[11] 梁锦钰, 冯运莉, 段阳会, 李杰. 高温退火时间对含铌低温取向电工钢二次再结晶行为的影响[J]. 材料导报, 2021, 35(12): 12141-12146.
[12] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[13] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[14] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[15] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed