Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18163-18169    https://doi.org/10.11896/cldb.20070295
  金属与金属基复合材料 |
18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究
曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇
昆明理工大学材料科学与工程学院,昆明 650093
Study on the Hot Compression Recrystallization Behavior of 18Cr-3Mn-1Ni-0.22N Low Nickel Type Duplex Stainless Steel
ZENG Zeyao, YANG Yinhui, CAO Jianchun, NI Ke,PAN Xiaoyu
Faculty of Materials Science and Engineering, University of Science and Technology Kunming, Kunming 650093, China
下载:  全 文 ( PDF ) ( 22328KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用物理模拟方法研究了18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢在1 123~1 423 K/0.01~10 s-1、变形量为70%条件下的热压缩变形行为。不锈钢的流变曲线在1 223~1 423 K/0.01~1 s-1条件下发生了流变软化和二次硬化现象,且二次硬化随应变速率增至10 s-1而减缓。动态再结晶组织演变主要受温度和变形量的影响,在1 123 K/0.01~10 s-1变形时主要发生在铁素体相,而在1 323 K/0.01~10 s-1变形时主要发生在奥氏体相。不同应变速率条件下,1 123 K变形时不锈钢发生动态软化的程度最大,并随温度升至1 223 K时应力降幅较快。不同温度下1 s-1变形时不锈钢的软化程度最差,0.1 s-1且高于1 223 K变形时不锈钢的软化程度最好。当应变速率一定时,再结晶临界应变随温度升高呈先增加后下降趋势。建立了0.2~1.2真应变条件下功率耗散系数η与失稳因子ξ的3D热加工图。随应变的增大,η>0.3的区域逐渐从1 300~1 400 K/0.01 s-1向1 300~1 400 K/10 s-1扩大,ξ>0的安全区域集中在高温区。预测热加工的最佳参数范围为T=1 280~1 423 K,ε·=0.033~0.326 s-1,功率耗散系数η=0.39~0.44。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾泽瑶
杨银辉
曹建春
倪珂
潘晓宇
关键词:  节镍型双相不锈钢  应变硬化率  动态再结晶  临界应变  3D热加工图    
Abstract: Aphysical simulation method was used to study the hot compression behavior of 18Cr-3Mn-1Ni-0.22N low nickel type duplex stainless steel (DSS) in the deformation conditions of 1 123—1 423 K/0.01—10 s-1 with deformation amount of 70%. The flow curves of stainless steel exhibited the occurrence of deformation softening and secondary hardening in the deformation conditions of 1 223—1 423 K/0.01—1 s-1, and the extent of secondary hardening slowed down with strain rate increases to 10 s-1. The deformation microstructure evolution of dynamic recrystallization (DRX) was mainly affected by deformation temperature and strain ratio, which mainly occurred on ferrite phase deformed at 1 123 K/0.01—10 s-1, while on austenite phase deformed at 1 323 K/0.01—10 s-1. The maximum effect of dynamic softening was achieved deformed at 1 123 K, and then the stress decreased rapidly with increasing temperature to 1 223 K under strain rates of 0.01—10 s-1. The worst softening degree for the specimens deformed at 1 s-1 was obtained under different deformation temperatures, and the best softening degree was achieved when the deformation conditions were at 0.1 s-1 and greater than 1 223 K. The critical strains of DRX tend to increase first and then decrease with increasing temperature as the strain rate is constant. The 3D hot processing diagrams of power dissipation coefficient (η) and instability factor (ξ) with true strain of 0.2—1.2 were established. With the increase of strain, the zones with η>0.3 gradually expand from 1 300—1 400 K/0.01 s-1 to 1 300—1 400 K/10 s-1, and the safe hot working areas with ξ> 0 is concentrated in the high temperature ranges. The optimum parameters of hot working are in the deformation conditions of T=1 280—1 423 K and ε·=0.033—0.326 s-1, and the corresponding values of η=0.39—0.44.
Key words:  low nickel type duplex stainless steel    strain hardening rate    dynamic recrystallization    critical strain    3D hot processing map
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TG142.71  
  TG161  
基金资助: 国家自然科学基金(51461024;51861019)
作者简介:  杨银辉,昆明理工大学材料科学与工程学院教授。2011年毕业于同济大学材料科学与工程学院,获得材料学博士学位。同年加入昆明理工大学材料科学与工程学院工作至今,主要从事不锈钢材料设计、强韧化及组织相变,金属材料耐腐蚀性等方面的研究。先后主持3项国家自然科学基金项目,在SCI、EI检索期刊发表论文30余篇。
引用本文:    
曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
ZENG Zeyao, YANG Yinhui, CAO Jianchun, NI Ke,PAN Xiaoyu. Study on the Hot Compression Recrystallization Behavior of 18Cr-3Mn-1Ni-0.22N Low Nickel Type Duplex Stainless Steel. Materials Reports, 2021, 35(18): 18163-18169.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070295  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18163
1 Alvareal-armas I, Marinelli M. Acta Materialia, 2006, 54(19), 5041.
2 Cheng G, Gault B, Huang C Y, et al. Acta Materialia, 2018, 148(15), 334.
3 Lee S J, Fujiijiii H, Ushioda K. Journal of Alloys and Compounds, 2018,749, 776.
4 Oikawa K, Mitsui H, Ishida K. Materials Science Forum, 2005,500, 711.
5 Mosecker L, Saeed-Akbari A. Science & Technology of Advanced Mate-rials, 2013, 14(3), 33001.
6 Ma M, Ding H, Tang Z Y, et al. Journal of Iron & Steel Research International, 2016, 3, 244.
7 Khatami H H, Zarei H A, Ghambari M, et al. Steel Research Internatio-nal, 2018, 1700532, 10.
8 Li L F,Yang W Y,Sun Z Q. Acta Metallurgica Sinica, 2004, 12(6), 27 (in Chinese).
李龙飞, 杨王玥, 孙祖庆.金属学报, 2004, 12(6), 27.
9 Wu T H, Wang J J, Zhang Y, et al. Chinese Journal of Materials Research, 2019, 33(4), 2540 (in Chinese).
吴天海, 王建军, 张影, 等. 材料研究学报, 2019, 33(4), 2540.
10 Gao Z J, Li J, Feng Z H, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(10), 1266.
11 Duperez L, Cooman B C D, Akdut N. Metallurgical & Materials Transactions A, 2002, 33(7), 1931.
12 Teresa H, Galy J. Advanced Engineering Materials, 2010, 11(8), 615.
13 Pu E X, Wwn J. Journal of Alloys & Compounds, 2017,694, 617.
14 Zahiris H, Dav C H J, Hodgson P D. Scripta Materialia, 2005, 52(4), 299.
15 Shi X Z, Du S W, Chen S M. Journal of Iron & Steel Research International, 2019, 31(1), 31 (in Chinese).
师先哲, 杜诗文, 陈双梅.钢铁研究学报, 2019, 31(1), 31.
16 Su Y S, Yang Y H, Cao J C, et al. Acta Metallugica Sinica, 2018, 54(4), 485 (in Chinese).
苏煜森, 杨银辉, 曹建春, 等. 金属学报, 2018, 54(4), 485.
17 Wang L, Zhang R H. Forging & Stamping Technology, 2019, 44(3), 175 (in Chinese).
王磊, 张如华. 锻压技术, 2019, 44(3), 175.
18 Yuan W H, Gong X H, Sun Y Q, et al. Journal of Materials Enginee-ring, 2016, 44(5), 8 (in Chinese).
袁武华, 龚雪辉, 孙永庆, 等. 材料工程, 2016, 44(5), 8.
19 Sellars C M, Mctegart W J. Acta Metallurgica, 1966, 14(9), 1136.
20 Momeni A, Kazemi S, Bahrani A. International Journal of Minerals Metallurgy & Materials, 2013, 20(10), 953.
21 Ma M, Ding H, Zheng Y, et al. Journal of Iron and Steel Research International, 2016, 23(3), 244.
22 Yang H, Li Z H, Zhang Z L. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2006, 7(8), 1453.
23 Srinivasa N, Prasad Y V R K. Journal of Materials Processing Technology, 1995, 51(1-4), 171.
24 Mhamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Materials Characterization, 2015, 107, 293.
25 Kong Y H, Peng P. Journal of Alloys & Compounds, 2015, 622, 738.
[1] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[2] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[3] 徐善华, 赵晓蒙, 张海江, 张宗星, 王亮. 锈损冷弯薄壁钢板的断裂机制与断裂模型[J]. 材料导报, 2021, 35(14): 14130-14135.
[4] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[5] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[6] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[7] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[8] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[9] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[10] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[11] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[12] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[13] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[14] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[15] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed