Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20110186-11    https://doi.org/10.11896/cldb.20110186
  无机非金属及其复合材料 |
荧光碳量子点及其在防伪中的应用
张文博1,2,3, 石建丽4, 马建中4, 卫林峰5, 范倩倩4
1 陕西科技大学陕西省轻化工助剂化学与技术协同创新中心,西安 710021
2 陕西科技大学化学与化工学院,西安 710021
3 浙江温州轻工研究院,浙江 温州 325003
4 陕西科技大学轻工科学与工程学院,国家轻工化学实验工程示范中心,西安 710021
5 陕西科技大学材料科学与工程学院,西安 710021
Fluorescent Carbon Quantum Dots and Their Applications in Anti-Counterfeiting
ZHANG Wenbo1,2,3, SHI Jianli4, MA Jianzhong4, WEI Linfeng5, FAN Qianqian4
1 Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
2 College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
3 Zhejiang Wenzhou Research Institute of Light Industry, Wenzhou 325003, Zhejiang, China
4 National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
5 School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 4232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 假冒已成为一个日益严重的全球性问题,因此防伪技术具有十分重要的社会安全意义。使用荧光防伪安全油墨是一种重要的防伪手段。有机染料、共轭聚合物点、半导体量子点和稀土掺杂发光纳米材料是用来制备荧光防伪安全油墨的常用材料,但它们都具有一定的局限性,如有机染料受其光稳定性差和斯托克斯位移小的限制、聚合物点制备工艺复杂且价格昂贵等。碳量子点(Carbon quantum dots,CQDs)作为一种新型的碳基荧光纳米材料,具有成本低、易制备、荧光稳定性良好和毒性低等优点,是防伪领域最具发展前景的发光纳米材料之一。
近年来,CQDs在防伪应用中的研究相继涌出。目前,关于CQDs在防伪方面的主要应用方式是制作快干荧光油墨和具有特定图案或二维码的防伪标签。CQDs具有荧光、上转换发光和磷光等不同的发射模式。因此,为了更好地将CQDs用于防伪的安全标记,可以采用双模发射或三模发射等较难复制的手段,并结合光学耦合和编码等先进的加密手段。
本文首先详细介绍了CQDs的分类、光学性质和荧光机制;其次,简要介绍了CQDs的合成和改性方法,常用的三种改性方法为表面功能化、掺杂及与其他材料复合;最后,重点归纳了CQDs在防伪中的应用,并对其未来在防伪领域的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文博
石建丽
马建中
卫林峰
范倩倩
关键词:  碳量子点  光学性质  荧光机制  防伪    
Abstract: Counterfeiting has become an increasingly serious global problem, so anti-counterfeiting technologies are of great significance for social security. The use of fluorescent anti-counterfeiting security ink is an important anti-counterfeiting method. Organic dyes, conjugated polymer dots, semiconductor quantum dots and rare earth doped luminescent nanomaterials are commonly used materials for preparing fluorescent anti-counterfeiting security inks, while these materials show undesirable properties. For example, organic dyes are limited by poor light stability and small Stokes shift; the preparation processes of polymer dots are complicated and expensive. As a new type of carbon-based fluorescent nanomate-rials, carbon quantum dots (CQDs) have drawn tremendous attention due to their outstanding properties including low cost, easy preparation, good photostability and low toxicity. Compared with these fluorescent anti-counterfeiting ink materials, CQDs have become one of the most pro-mising luminescent nanomaterials in the field of anti-counterfeiting.
In recent years,there have been some research on carbon quantum dots in anti-counterfeiting applications. The current anti-counterfeiting approaches for CQDs are mainly to make quick-drying fluorescent inks, anti-counterfeiting labels with specific patterns or quick response(QR) codes. CQDs have different emission modes such as fluorescence, up-conversion luminescence and phosphorescence. Therefore, to be better used for security marking in anti-counterfeiting applications, dual-mode or triple-mode emission of CQDs and other difficult-to-replicate methods are adopted, combined with advanced encryption methods such as optical coupling and encoding.
In this review, the classification, optical properties and fluorescence mechanism of CQDs were firstly discussed in detail. Secondly, the synthesis and modification methods of CQDs were briefly introduced. The three common modification methods are surface functionalization, doping, and composite with other materials. Finally, their applications in anti-counterfeiting were reviewed, and the direction of CQDs research in anti-counterfeiting were prospected.
Key words:  carbon quantum dots    optical properties    fluorescence mechanism    anti-counterfeiting
出版日期:  2022-04-10      发布日期:  2022-04-07
ZTFLH:  O613.71  
  O472+.3  
  TQ127.1  
基金资助: 国家自然科学基金(21908141;52073164);温州市基础性工业科技项目(G20190008)
通讯作者:  majz@sust.edu.cn   
作者简介:  张文博,陕西科技大学副教授,硕士研究生导师。2016年毕业于陕西科技大学,获工学博士学位。主要从事聚合物基石墨烯复合材料的研究工作。中国化工学会精细化工专业委员会青年委员,中国化学会会员,西安纳米科技学会会员。主持科研项目10余项,以第一作者或通讯作者在国际权威期刊发表学术论文18篇,其中被SCI收录及EI收录15篇。授权德国发明专利1项,中国发明专利9项,开发并工业化生产3种精细化学品。
马建中,陕西科技大学教授,博士研究生导师。1998年9月毕业于浙江大学,获理学博士学位。主要从事水性高分子的设计与合成及有机/无机纳米复合材料的关键技术等的研究。曾任国务院学位委员会轻工技术与工程学科评议组召集人,中国皮革协会技术委员会主任。主持国家重点研发计划、973预研计划、863计划、国家自然科学基金重点项目及横向项目50余项,曾获国家技术发明二等奖、国家科技进步二等奖、国家高等教育教学成果奖二等奖和何梁何利基金产业创新奖等奖励。出版著作9部,发表学术论文400余篇(SCI/EI收录200余篇,ESI高被引7篇);授权美国发明专利3项、德国发明专利2项、英国发明专利1项、中国发明专利100余项。
引用本文:    
张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
ZHANG Wenbo, SHI Jianli, MA Jianzhong, WEI Linfeng, FAN Qianqian. Fluorescent Carbon Quantum Dots and Their Applications in Anti-Counterfeiting. Materials Reports, 2022, 36(7): 20110186-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110186  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20110186
1 Bawendi M G, Steigerwald M L, Brus L E. Annual Review of Physical Chemistry, 1990, 41, 477.
2 Fernando K A S, Sahu S, Liu Y, et al. ACS Applied Materials & Interfaces, 2015, 7(16), 8363.
3 Sun Y P, Zhou B, Lin Y, et al. Journal of the American Chemical Society, 2006, 128(24), 7756.
4 Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Abedi M. Separation and Purification Technology, 2018, 199, 64.
5 Fan Q Q, Biesold-McGee G V, Xu Q N, et al. Angewandte Chemie International Edition, 2020, 59(3), 1030.
6 Molaei M J. Talanta, 2019, 196, 456.
7 Sun Y Q, Wang X J, Wang C, et al. Microchimica Acta, 2018, 185(1), 83.
8 Namdari P, Negahdari B, Eatemadi A. Biomedicine & Pharmacotherapy, 2017, 87, 209.
9 Zhu S J, Song Y B, Zhao X H, et al. Nano Research, 2015, 8(2), 355.
10 Xu X Y, Ray R, Gu Y L, et al. Journal of the American Chemical Society, 2004, 126(40), 12736.
11 Das R, Bandyopadhyay R, Pramanik P. Materials Today Chemistry, 2018, 8, 96.
12 Zuo P L, Lu X H, Sun Z G, et al. Microchimica Acta, 2016, 183(2), 519.
13 Mo G C, He X X, Zhou C Q, et al. Biosensors and Bioelectronics, 2019, 126, 558.20110186-20110186-
14 Su W, Guo R H, Yuan F L, et al. The Journal of Physical Chemistry Letters, 2020, 11, 1357.
15 Yang W N, Zhang H, Lai J X, et al. Carbon, 2018, 128, 78.
16 Si Y H, Li X R, Yang G, et al. Journal of Materials Science, 2020, 55(27), 13049.
17 Liu Y, Li X, Zhang Q H, et al. Angewandte Chemie International Edition, 2019, 59(4), 1718.
18 Molaei M J. Solar Energy, 2020, 196, 549.
19 Jiang K, Zhang L, Lu J F, et al. Angewandte Chemie International Edition, 2016, 55, 7231.
20 Kalytchuk S, Wang Y, Polakova K, et al. ACS Applied Materials & Interfaces, 2018, 10, 29902.
21 Hou X, Ke C, Bruns C J, et al. Nature Communications,2015,6(1),1.
22 Peng H Q, Sun C L, Niu L Y, et al. Advanced Functional Materials, 2016, 26, 5483.
23 Wu Y, Zhong Y, Chu B,et al. Chemical Communications, 2016, 52, 7047.
24 Han T, Yuan Y, Liang X, et al. Journal of Materials Chemistry C, 2017, 5, 4629.
25 Kaczmarek A M, Liu Y Y, Wang C, et al. Advanced Functional Mate-rials, 2017, 27, 1700258.
26 Chen C, Yu Y, Li C, et al. Small, 2017, 13, 1702305.
27 Sun T, Xu B, Chen B, et al. Nanoscale, 2017, 9, 2701.
28 Lou Q, Qu S, Jing P, et al. Advanced Materials, 2015, 27, 1389.
29 Pang Y Y, Zhao R J, Lu Y, et al. New Journal of Chemistry, 2018, 42, 17091.
30 Zhang X, Li D, Zhou D, et al. RSC Advances, 2016, 6(83), 79620.
31 Liu Y H, Zhang D X, Mao B D, et al. Acta Chimica Sinica, 2020, 78(12), 1349(in Chinese).
刘艳红, 张东旭, 毛宝东, 等.化学学报, 2020, 78(12), 1349.
32 Xu Y, Liu J, Gao C, et al. Electrochemistry Communications, 2014, 48, 151.
33 Duran N, Simões M B, Moraes A, et al. Journal of Biomedical Nanotechnology, 2016, 12(7), 1323.
34 Zhang J, Yu S H. Materials Today, 2016, 19(7), 382.
35 Wang R, Lu K Q, Tang Z R, et al. Journal of Materials Chemistry A, 2017, 5(8), 3717.
36 Pan L, Sun S, Zhang A, et al. Advanced Materials, 2016, 27, 7782.
37 Wang Z F, Yuan F L, Li X H, et al. Advanced Materials, 2017, 29(37), 1702910.
38 Yuan F L, Yuan T, Sui L Z, et al. Nature Communications, 2018, 9(1), 1.
39 Ding H, Wei J S, Zhang P, et al. Small, 2018, 14, 1800612.
40 Rodrigues J, Pereira S O, Teixeira S S, et al. Materials Today Communications, 2019, 18, 32.
41 Song Z Q, Quan F Y, Xu Y H, et al. Carbon, 2016, 104, 169.
42 Shang W, Cai T, Zhang Y, et al. Tribology International, 2018, 118, 373.
43 Zhu J Y, Bai X, Chen X, et al. Dalton Transactions, 2018, 47, 3811.
44 Liu Y, Zhou L, Li Y, et al. Nanoscale, 2017, 9, 491.
45 Wang J L, Wang Y L, Zheng J X, et al. Progress in Chemistry, 2018, 30(8), 1186(in Chinese).
王军丽, 王亚玲, 郑静霞, 等. 化学进展, 2018, 30(8), 1186.
46 Nie H, Li M J, Li Q S, et al. Chemistry of Materials, 2014, 26(10), 3104.
47 Dong Y Q, Wang R X, Li H, et al. Carbon, 2012, 50, 2810.
48 Gao D, Zhang Y L, Sun J, et al. Journal of Inorganic Materials, 2019, 34(12), 1309(in Chinese).
高东, 张煜亮, 孙静, 等. 无机材料学报, 2019, 34(12), 1309.
49 Wang H, Sun C, Chen X R, et al. Nanoscale, 2017, 9, 1909.
50 Ren J K, Sun J B, Sun X M, et al. Advanced Optical Materials, 2018, 6(14), 1800115.
51 Jia X, Li J, Wang E. Nanoscale, 2012, 4(18), 5572.
52 Shen J H, Zhu Y H, Chen C, et al. Chemical Communications, 2011, 47(9), 2580.
53 Zhu S J, Wang L, Li B, et al. Carbon, 2014, 77, 462.
54 Lin L X, Zhang S W. Chemical Communications, 2012, 48, 10177.
55 Liu F, Jang M H, Ha H D, et al. Advanced Materials, 2013, 25, 3657.
56 Jin S H, Kim D H, Jun G H, et al. ACS Nano, 2013, 7, 1239.
57 Li H T, He X D, Kang Z H, et al. Angewandte Chemie, 2010, 49, 4430.
58 Ding H, Yu S B, Wei J S, et al. ACS Nano, 2016, 10(1), 484.
59 Han L, Liu S G, Dong J X, et al. Journal of Materials Chemistry C, 2017, 5(41), 10785.
60 Guo Y, Zhang L, Zhang S, et al. Biosensors and Bioelectronics, 2015, 63, 61.
61 Yang K, Wang C L, Ding S, et al. Materials Reports A: Review Papers, 2019, 33(3), 1475(in Chinese).
杨焜, 王春来, 丁晟, 等.材料导报:综述篇, 2019, 33(3), 1475.
62 Zhang W B, Wei L F, Ma J Z, et al. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105838.
63 Farshbaf M, Davaran S, Rahimi F, et al. Nanomedicine, and Biotechno-logy, 2018, 46(7), 1331.
64 He P, Yuan F L, Wang Z F, et al. Acta Physico-Chimica Sinica, 2018, 34(11), 1250(in Chinese).
贺平, 袁方龙, 王子飞, 等.物理化学学报, 2018, 34(11), 1250.
65 Guo Y, Chen Y, Cao F, et al. RSC Advances, 2017, 7(76), 48386.
66 Lu S Y, Yang B. Acta Polymerica Sinica, 2017(7), 1200(in Chinese).
卢思宇, 杨柏.高分子学报, 2017(7), 1200.
67 Qi S Y, Zhao L, Li M Y, et al. Scientia Sinica Chimica, 2017, 47(9), 1132(in Chinese).
戚淑燕, 赵璐, 李明悦, 等.中国科学:化学, 2017, 47(9), 1132.
68 Lin L P, Luo Y X, Tsai P Y, et al. Trends in Analytical Chemistry, 2018, 103, 87.
69 Atabaev T S. Nanomaterials, 2018, 8(5), 342.
70 Fan C H, Ao K L, Lv P F, et al. Nano, 2018, 13(8), 1850097.
71 Bao R Q, Chen Z Y, Zhao Z W, et al. Nanomaterials, 2018, 8, 386.
72 Wang Y, Meng H, Jia M Y, et al. Nanoscale, 2016, 8, 17190.
73 Lu Y, Zhao J, Zhang R, et al. Nature Photonics, 2014, 8(1), 32.
74 Pan Y, Yang J, Fang Y N, et al. Journal of Materials Chemistry B, 2017, 5, 92.
75 Pirsaheb M, Asadi A, Sillanpää M, et al. Journal of Molecular Liquids, 2018, 271(1), 857.
76 Xu L, Yang L, Bai X, et al. Chemical Engineering Journal, 2019, 373, 238.
77 Yan Y, Kuang W, Shi L, et al. Journal of Alloys and Compounds, 2019, 777, 234.
78 Liu J L, Wang Y H, Ma J Z, et al. Journal of Alloys and Compounds, 2019, 783, 898.
79 Chen D J, Cui C Y, Tong N, et al. ACS Applied Materials & Interfaces, 2018, 11(1), 1480.
80 Kumar P, Singh S, Gupta B K. Nanoscale, 2016, 8, 14297.
81 Liu Y, Zhou L, Li Y, et al. Nanoscale, 2017, 9 (2), 491.
82 Kang H, Lee J W, Nam Y. ACS Applied Materials & Interfaces, 2018, 10, 6764.
83 Li M X, Yao W J, Liu J, et al. Journal of Materials Chemistry C, 2017, 5(26), 6512.
84 Jiang K, Hu S Z, Wang Y C, et al. Small, 2020, 16(31), 2001909.
85 Zhang Z, Chang H, Xue B L, et al. Cellulose, 2018, 25(1), 377.
86 Wang Y, Cepe K, Zboril R. Journal of Materials Chemistry C, 2016, 4, 7253.
87 Bai L Q, Xue N, Zhao Y F, et al. Nano Research, 2018, 11(4), 2034.
88 Zhao J W, Zheng Y Y, Pang Y Y, et al. Journal of Colloid and Interface Science, 2020, 579, 307.
[1] 关玉琴, 侯清玉, 谷玉兰. 不同价态的Mn和点空位对ZnO体系光学性能的影响[J]. 材料导报, 2022, 36(2): 20110265-7.
[2] 沈潇, 魏钦华, 张伟杰, 唐高, 陈振华, 秦来顺, 史宏声. 蓝宝石表面原位玻璃化处理及性能研究[J]. 材料导报, 2021, 35(22): 22022-22026.
[3] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[4] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[5] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[6] 杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(Z2): 1-9.
[7] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[8] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[9] 张睿, 顾晓龙, 庞欢. 新型异金属三羰基铼配合物的合成及光学性质研究[J]. 《材料导报》期刊社, 2018, 32(8): 1252-1257.
[10] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
[11] 王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
[12] 闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
[13] 张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed