Fluorescent Carbon Quantum Dots and Their Applications in Anti-Counterfeiting
ZHANG Wenbo1,2,3, SHI Jianli4, MA Jianzhong4, WEI Linfeng5, FAN Qianqian4
1 Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China 2 College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China 3 Zhejiang Wenzhou Research Institute of Light Industry, Wenzhou 325003, Zhejiang, China 4 National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China 5 School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
Abstract: Counterfeiting has become an increasingly serious global problem, so anti-counterfeiting technologies are of great significance for social security. The use of fluorescent anti-counterfeiting security ink is an important anti-counterfeiting method. Organic dyes, conjugated polymer dots, semiconductor quantum dots and rare earth doped luminescent nanomaterials are commonly used materials for preparing fluorescent anti-counterfeiting security inks, while these materials show undesirable properties. For example, organic dyes are limited by poor light stability and small Stokes shift; the preparation processes of polymer dots are complicated and expensive. As a new type of carbon-based fluorescent nanomate-rials, carbon quantum dots (CQDs) have drawn tremendous attention due to their outstanding properties including low cost, easy preparation, good photostability and low toxicity. Compared with these fluorescent anti-counterfeiting ink materials, CQDs have become one of the most pro-mising luminescent nanomaterials in the field of anti-counterfeiting. In recent years,there have been some research on carbon quantum dots in anti-counterfeiting applications. The current anti-counterfeiting approaches for CQDs are mainly to make quick-drying fluorescent inks, anti-counterfeiting labels with specific patterns or quick response(QR) codes. CQDs have different emission modes such as fluorescence, up-conversion luminescence and phosphorescence. Therefore, to be better used for security marking in anti-counterfeiting applications, dual-mode or triple-mode emission of CQDs and other difficult-to-replicate methods are adopted, combined with advanced encryption methods such as optical coupling and encoding. In this review, the classification, optical properties and fluorescence mechanism of CQDs were firstly discussed in detail. Secondly, the synthesis and modification methods of CQDs were briefly introduced. The three common modification methods are surface functionalization, doping, and composite with other materials. Finally, their applications in anti-counterfeiting were reviewed, and the direction of CQDs research in anti-counterfeiting were prospected.
1 Bawendi M G, Steigerwald M L, Brus L E. Annual Review of Physical Chemistry, 1990, 41, 477. 2 Fernando K A S, Sahu S, Liu Y, et al. ACS Applied Materials & Interfaces, 2015, 7(16), 8363. 3 Sun Y P, Zhou B, Lin Y, et al. Journal of the American Chemical Society, 2006, 128(24), 7756. 4 Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Abedi M. Separation and Purification Technology, 2018, 199, 64. 5 Fan Q Q, Biesold-McGee G V, Xu Q N, et al. Angewandte Chemie International Edition, 2020, 59(3), 1030. 6 Molaei M J. Talanta, 2019, 196, 456. 7 Sun Y Q, Wang X J, Wang C, et al. Microchimica Acta, 2018, 185(1), 83. 8 Namdari P, Negahdari B, Eatemadi A. Biomedicine & Pharmacotherapy, 2017, 87, 209. 9 Zhu S J, Song Y B, Zhao X H, et al. Nano Research, 2015, 8(2), 355. 10 Xu X Y, Ray R, Gu Y L, et al. Journal of the American Chemical Society, 2004, 126(40), 12736. 11 Das R, Bandyopadhyay R, Pramanik P. Materials Today Chemistry, 2018, 8, 96. 12 Zuo P L, Lu X H, Sun Z G, et al. Microchimica Acta, 2016, 183(2), 519. 13 Mo G C, He X X, Zhou C Q, et al. Biosensors and Bioelectronics, 2019, 126, 558.20110186-20110186- 14 Su W, Guo R H, Yuan F L, et al. The Journal of Physical Chemistry Letters, 2020, 11, 1357. 15 Yang W N, Zhang H, Lai J X, et al. Carbon, 2018, 128, 78. 16 Si Y H, Li X R, Yang G, et al. Journal of Materials Science, 2020, 55(27), 13049. 17 Liu Y, Li X, Zhang Q H, et al. Angewandte Chemie International Edition, 2019, 59(4), 1718. 18 Molaei M J. Solar Energy, 2020, 196, 549. 19 Jiang K, Zhang L, Lu J F, et al. Angewandte Chemie International Edition, 2016, 55, 7231. 20 Kalytchuk S, Wang Y, Polakova K, et al. ACS Applied Materials & Interfaces, 2018, 10, 29902. 21 Hou X, Ke C, Bruns C J, et al. Nature Communications,2015,6(1),1. 22 Peng H Q, Sun C L, Niu L Y, et al. Advanced Functional Materials, 2016, 26, 5483. 23 Wu Y, Zhong Y, Chu B,et al. Chemical Communications, 2016, 52, 7047. 24 Han T, Yuan Y, Liang X, et al. Journal of Materials Chemistry C, 2017, 5, 4629. 25 Kaczmarek A M, Liu Y Y, Wang C, et al. Advanced Functional Mate-rials, 2017, 27, 1700258. 26 Chen C, Yu Y, Li C, et al. Small, 2017, 13, 1702305. 27 Sun T, Xu B, Chen B, et al. Nanoscale, 2017, 9, 2701. 28 Lou Q, Qu S, Jing P, et al. Advanced Materials, 2015, 27, 1389. 29 Pang Y Y, Zhao R J, Lu Y, et al. New Journal of Chemistry, 2018, 42, 17091. 30 Zhang X, Li D, Zhou D, et al. RSC Advances, 2016, 6(83), 79620. 31 Liu Y H, Zhang D X, Mao B D, et al. Acta Chimica Sinica, 2020, 78(12), 1349(in Chinese). 刘艳红, 张东旭, 毛宝东, 等.化学学报, 2020, 78(12), 1349. 32 Xu Y, Liu J, Gao C, et al. Electrochemistry Communications, 2014, 48, 151. 33 Duran N, Simões M B, Moraes A, et al. Journal of Biomedical Nanotechnology, 2016, 12(7), 1323. 34 Zhang J, Yu S H. Materials Today, 2016, 19(7), 382. 35 Wang R, Lu K Q, Tang Z R, et al. Journal of Materials Chemistry A, 2017, 5(8), 3717. 36 Pan L, Sun S, Zhang A, et al. Advanced Materials, 2016, 27, 7782. 37 Wang Z F, Yuan F L, Li X H, et al. Advanced Materials, 2017, 29(37), 1702910. 38 Yuan F L, Yuan T, Sui L Z, et al. Nature Communications, 2018, 9(1), 1. 39 Ding H, Wei J S, Zhang P, et al. Small, 2018, 14, 1800612. 40 Rodrigues J, Pereira S O, Teixeira S S, et al. Materials Today Communications, 2019, 18, 32. 41 Song Z Q, Quan F Y, Xu Y H, et al. Carbon, 2016, 104, 169. 42 Shang W, Cai T, Zhang Y, et al. Tribology International, 2018, 118, 373. 43 Zhu J Y, Bai X, Chen X, et al. Dalton Transactions, 2018, 47, 3811. 44 Liu Y, Zhou L, Li Y, et al. Nanoscale, 2017, 9, 491. 45 Wang J L, Wang Y L, Zheng J X, et al. Progress in Chemistry, 2018, 30(8), 1186(in Chinese). 王军丽, 王亚玲, 郑静霞, 等. 化学进展, 2018, 30(8), 1186. 46 Nie H, Li M J, Li Q S, et al. Chemistry of Materials, 2014, 26(10), 3104. 47 Dong Y Q, Wang R X, Li H, et al. Carbon, 2012, 50, 2810. 48 Gao D, Zhang Y L, Sun J, et al. Journal of Inorganic Materials, 2019, 34(12), 1309(in Chinese). 高东, 张煜亮, 孙静, 等. 无机材料学报, 2019, 34(12), 1309. 49 Wang H, Sun C, Chen X R, et al. Nanoscale, 2017, 9, 1909. 50 Ren J K, Sun J B, Sun X M, et al. Advanced Optical Materials, 2018, 6(14), 1800115. 51 Jia X, Li J, Wang E. Nanoscale, 2012, 4(18), 5572. 52 Shen J H, Zhu Y H, Chen C, et al. Chemical Communications, 2011, 47(9), 2580. 53 Zhu S J, Wang L, Li B, et al. Carbon, 2014, 77, 462. 54 Lin L X, Zhang S W. Chemical Communications, 2012, 48, 10177. 55 Liu F, Jang M H, Ha H D, et al. Advanced Materials, 2013, 25, 3657. 56 Jin S H, Kim D H, Jun G H, et al. ACS Nano, 2013, 7, 1239. 57 Li H T, He X D, Kang Z H, et al. Angewandte Chemie, 2010, 49, 4430. 58 Ding H, Yu S B, Wei J S, et al. ACS Nano, 2016, 10(1), 484. 59 Han L, Liu S G, Dong J X, et al. Journal of Materials Chemistry C, 2017, 5(41), 10785. 60 Guo Y, Zhang L, Zhang S, et al. Biosensors and Bioelectronics, 2015, 63, 61. 61 Yang K, Wang C L, Ding S, et al. Materials Reports A: Review Papers, 2019, 33(3), 1475(in Chinese). 杨焜, 王春来, 丁晟, 等.材料导报:综述篇, 2019, 33(3), 1475. 62 Zhang W B, Wei L F, Ma J Z, et al. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105838. 63 Farshbaf M, Davaran S, Rahimi F, et al. Nanomedicine, and Biotechno-logy, 2018, 46(7), 1331. 64 He P, Yuan F L, Wang Z F, et al. Acta Physico-Chimica Sinica, 2018, 34(11), 1250(in Chinese). 贺平, 袁方龙, 王子飞, 等.物理化学学报, 2018, 34(11), 1250. 65 Guo Y, Chen Y, Cao F, et al. RSC Advances, 2017, 7(76), 48386. 66 Lu S Y, Yang B. Acta Polymerica Sinica, 2017(7), 1200(in Chinese). 卢思宇, 杨柏.高分子学报, 2017(7), 1200. 67 Qi S Y, Zhao L, Li M Y, et al. Scientia Sinica Chimica, 2017, 47(9), 1132(in Chinese). 戚淑燕, 赵璐, 李明悦, 等.中国科学:化学, 2017, 47(9), 1132. 68 Lin L P, Luo Y X, Tsai P Y, et al. Trends in Analytical Chemistry, 2018, 103, 87. 69 Atabaev T S. Nanomaterials, 2018, 8(5), 342. 70 Fan C H, Ao K L, Lv P F, et al. Nano, 2018, 13(8), 1850097. 71 Bao R Q, Chen Z Y, Zhao Z W, et al. Nanomaterials, 2018, 8, 386. 72 Wang Y, Meng H, Jia M Y, et al. Nanoscale, 2016, 8, 17190. 73 Lu Y, Zhao J, Zhang R, et al. Nature Photonics, 2014, 8(1), 32. 74 Pan Y, Yang J, Fang Y N, et al. Journal of Materials Chemistry B, 2017, 5, 92. 75 Pirsaheb M, Asadi A, Sillanpää M, et al. Journal of Molecular Liquids, 2018, 271(1), 857. 76 Xu L, Yang L, Bai X, et al. Chemical Engineering Journal, 2019, 373, 238. 77 Yan Y, Kuang W, Shi L, et al. Journal of Alloys and Compounds, 2019, 777, 234. 78 Liu J L, Wang Y H, Ma J Z, et al. Journal of Alloys and Compounds, 2019, 783, 898. 79 Chen D J, Cui C Y, Tong N, et al. ACS Applied Materials & Interfaces, 2018, 11(1), 1480. 80 Kumar P, Singh S, Gupta B K. Nanoscale, 2016, 8, 14297. 81 Liu Y, Zhou L, Li Y, et al. Nanoscale, 2017, 9 (2), 491. 82 Kang H, Lee J W, Nam Y. ACS Applied Materials & Interfaces, 2018, 10, 6764. 83 Li M X, Yao W J, Liu J, et al. Journal of Materials Chemistry C, 2017, 5(26), 6512. 84 Jiang K, Hu S Z, Wang Y C, et al. Small, 2020, 16(31), 2001909. 85 Zhang Z, Chang H, Xue B L, et al. Cellulose, 2018, 25(1), 377. 86 Wang Y, Cepe K, Zboril R. Journal of Materials Chemistry C, 2016, 4, 7253. 87 Bai L Q, Xue N, Zhao Y F, et al. Nano Research, 2018, 11(4), 2034. 88 Zhao J W, Zheng Y Y, Pang Y Y, et al. Journal of Colloid and Interface Science, 2020, 579, 307.