Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21030087-4    https://doi.org/10.11896/cldb.21030087
  无机非金属及其复合材料 |
稀释剂种类对燃烧合成氮化硅粉体的影响
李飞1, 崔巍1,2, 田兆波1, 张杰1, 杜松墨1, 陈张霖1, 刘光华1,*
1 清华大学材料学院,北京 100084
2 佛山(华南)新材料研究院,广东 佛山 528000
The Effect of Diluent Type on Silicon Nitride Powders by Combustion Synthesis
LI Fei1, CUI Wei1,2, TIAN Zhaobo1, ZHANG Jie1, DU Songmo1, CHEN Zhanglin1, LIU Guanghua1,*
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Foshan (Southern China) Institute for New Materials, Foshan 528000, Guangdong, China
下载:  全 文 ( PDF ) ( 4611KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以硅粉作为反应原料,在N2气氛中通过燃烧合成制备Si3N4粉体。为获得烧结活性好的高α相Si3N4粉体,在燃烧合成过程中需要加入一定比例的稀释剂。分别以粒径为3 μm的α-Si3N4、β-Si3N4和BN粉体作为稀释剂,将硅粉、稀释剂、NH4Cl按一定质量比(46∶49∶5)均匀混合,在6 MPa氮气压力下燃烧合成制备Si3N4粉体。利用X射线衍射仪、扫描电子显微镜、X射线能谱对产物相组成、相含量和显微结构进行研究,并分析不同种类稀释剂对燃烧合成Si3N4粉体的影响。结果表明:以3 μm的α-Si3N4、β-Si3N4作为稀释剂的燃烧合成过程的最高温度均高于1 700 ℃,制得的产物中,新生成的α-Si3N4均低于40%(质量分数);以3 μm的BN作为稀释剂燃烧合成过程的最高温度略高于1 500 ℃,制得的产物中,新生成的α-Si3N4含量高于90%(质量分数)。产物中的α-Si3N4粉体为爪状或菜花状形貌,β-Si3N4粉体为棱柱状形貌,不同相Si3N4粉体粒径分布较为均匀。最终,相比较于以Si3N4粉体作为稀释剂,以BN粉体作为稀释剂可以降低燃烧合成的最高反应温度并有效隔离硅熔体,从而提高Si3N4产物的α相含量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李飞
崔巍
田兆波
张杰
杜松墨
陈张霖
刘光华
关键词:  燃烧合成  稀释剂  氮化硅    
Abstract: Si3N4 powders were prepared by combustion synthesis in N2 with silicon powder as reaction raw material. A certain amount of diluent was added in order to obtain high α-phase Si3N4 powders with good sintering activity. The silicon powder, diluents and NH4Cl were uniformly mixed in the certain mass ratio (46∶49∶5) and used to prepare Si3N4 powders by combustion synthesis under 6 MPa N2 pressure, in which the diluents were α-Si3N4, β-Si3N4 and BN powders with the particle size of 3 μm. The phase composition and microstructure of the products were studied by X-ray diffractometer, scanning electron microscope and X-ray energy spectrum, and the effect of diluent on Si3N4 powders by combustion synthesis was analyzed. The results showed that the highest temperatures of samples with α-Si3N4 and β-Si3N4 as diluents were higher than 1 700 ℃, and the contents of newly formed α-Si3N4 were less than 40% (mass fraction) in the prepared products. With 3 μm BN as diluent, the highest temperature of combustion synthesis was slightly higher than 1 500 ℃, and the content of newly formed α-Si3N4 in the prepared product was higher than 90% (mass fraction). α-Si3N4 particle in the product was in the shape of claw or cauliflower, and β-Si3N4 particle was in the shape of prismatic. The particle size distribution of Si3N4 powders with different phases were more uniform. Finally, compared with Si3N4 powder as diluent, BN powder as diluent can reduce the maximum reaction temperature of combustion synthesis and effectively isolate silicon melt, thus increasing the α phase content of Si3N4 product.
Key words:  combustion synthesis    diluent    silicon nitride
发布日期:  2022-05-24
ZTFLH:  TB321  
基金资助: 中国博士后科学基金(2018M641344;2020T130335)
通讯作者:  liuguanghua@mail.tsinghua.edu.cn   
作者简介:  李飞,清华大学2019级在读博士研究生,主要研究方向为高性能硅基陶瓷粉体的制备与烧结工艺。以一作或合作作者发表SCI论文3篇,申请专利4项,参与多个国家自然科学基金项目。
崔巍,2014年在清华大学获得博士学位,之后在北京化工大学工作。2018年起,进入清华大学材料学院博士后流动站。主要研究硅基陶瓷粉体的制备和产业化。发表SCI论文10余篇,已授权专利约10项,荣获2020年度清华大学优秀博士后荣誉称号。
刘光华,2007年在清华大学获得博士学位,之后加入中国科学院理化技术研究所。在2008—2009年期间,在瑞典斯德哥尔摩大学担任客座研究员。2017年起,在清华大学材料学院担任副教授。主要研究陶瓷材料的新型制备工艺。发表SCI论文超过150篇,综述四篇,撰写三本书中部分章节以及已授权专利约20项。共同第一作者
引用本文:    
李飞, 崔巍, 田兆波, 张杰, 杜松墨, 陈张霖, 刘光华. 稀释剂种类对燃烧合成氮化硅粉体的影响[J]. 材料导报, 2022, 36(10): 21030087-4.
LI Fei, CUI Wei, TIAN Zhaobo, ZHANG Jie, DU Songmo, CHEN Zhanglin, LIU Guanghua. The Effect of Diluent Type on Silicon Nitride Powders by Combustion Synthesis. Materials Reports, 2022, 36(10): 21030087-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030087  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21030087
1 Lange H, Wtting G, Winter G. Angewandte Chemie International Edition, 1991, 30(12),1579.
2 Riley F L. Journal of the American Ceramic Society, 2000, 83(2),245.
3 Petzow G, Herrmann M. Structure and Bonding, 2002,102(1),47.
4 Zhang J, Cui W, Li F, et al. Ceramics International, 2020, 46(10),15719.
5 Hardie D, Jack K H. Nature, 1957, 180, 332.
6 Pavarajarn V, Kimura S. Journal of the American Ceramic Society, 2001, 84(8), 1669.
7 Neto E F, Kiminami R H G A. Advanced Powder Technology, 2014, 25, 654.
8 Durham S J, Shanker K, Drew R A. Journal of the American Ceramic Society, 1991, 74, 31.
9 Subrahmanyam J, Vijayakumar M. Journal of Materials Science, 1992, 27, 6249.
10 Mossino P. Ceramics International, 2004, 30(3), 311.
11 Jin H B, Cao M S, Chen Y X, et al. Ceramics International, 2008, 34(5), 1267.
12 Chen Y X, Li J T, Du J S. Materials Research Bulletin, 2008, 43(6), 1598.
13 Mukas'yan A S, Martynenko V M, Merzhanov A G, et al. Combustion, Explosion and Shock Waves, 1986, 22(5), 534.
14 Zhang B L, Zhuang H R, Fu X R. Journal of Inorganic Materials, 1993, 8(4), 433.
张宝林, 庄汉锐, 符锡仁.无机材料学报, 1993, 8(4), 433.
15 Chen D Y, Zhang B L, Zhuang H R, et al. Materials Research Bulletin, 2002, 37, 1481.
16 Gazzara C P, Messier D R. American Ceramic Society Bulletin, 1977, 56(9),777.
17 Jennings H M, Danforth S C, Richman M H. Journal Materials Science Letter, 1979, 14, 1013.
18 Cano I G, Rodri'guez M A. Scripta Materials, 2004, 50(3), 383.
19 Cano I G, Rodri'guez M A, Borovinskayn I P, et al. Journal of the American Ceramic Society, 2002, 85(9), 2209.
20 Longland P, Moulson A J. Journal of Materials Science, 1978, 13, 2279.
21 Suematsu H, Mitomo M. Journal of the American Ceramic Society, 1997, 80(3), 615.
[1] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[2] 廖圣俊, 周立娟, 尹凯俐, 王建军, 姜常玺. 高导热氮化硅陶瓷基板研究现状[J]. 材料导报, 2020, 34(21): 21105-21114.
[3] 郭乐扬. 氮化硅陶瓷的连接工艺以及钎料研究进展[J]. 材料导报, 2019, 33(Z2): 198-201.
[4] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[5] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[6] 兰宇, 李兵, 周子皓, 张以纯, 尹传强, 魏秀琴, 周浪. 表面氧含量对高纯硅粉高温氮化行为的影响[J]. 材料导报, 2018, 32(16): 2719-2722.
[7] 张晨, 应国兵, 王乘, 王鹏举, 田宝娜, 韩建兴, 王香. 高孔隙率多孔氮化硅构件较高马赫数下流-热-固耦合力学特性分析*[J]. 《材料导报》期刊社, 2017, 31(4): 131-136.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed