Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2719-2722    https://doi.org/10.11896/j.issn.1005-023X.2018.16.003
  无机非金属及其复合材料 |
表面氧含量对高纯硅粉高温氮化行为的影响
兰宇, 李兵, 周子皓, 张以纯, 尹传强, 魏秀琴, 周浪
南昌大学光伏研究院/材料科学与工程学院,南昌 330031
Effects of Surface Oxygen Content on the High-temperature Nitridation of High-purity Silicon Powders
LAN Yu, LI Bing, ZHOU Zihao, ZHANG Yichun, YIN Chuanqiang, WEI Xiuqin, ZHOU Lang
Institute of Photovoltaics/School of Materials Science and Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 1821KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了表面氧含量对高纯硅原料在氮氢气氛下直接氮化行为的影响,并合成高α相氮化硅。研究结果表明,硅粉在氮氢气氛下1 350 ℃保温3 h,氮化产物中α-Si3N4含量随原料氧含量的增加呈先增加后减少的趋势,当硅原料表面氧含量为3.91%时,氮化产物中α-Si3N4含量可达97%以上,残留硅含量低于1%,产物中部氧含量为1.71%,在此环境下硅粉氮化主要以化学气相沉积的方式进行,产物形貌以杆状α-Si3N4晶须为主。硅原料表面氧含量低于4.38%时,氮化产物α-Si3N4含量均在95%以上,另有少量的β-Si3N4和残留硅,XRD测试精度范围内无氮氧化硅相存在。当硅原料氧含量高于5.61%时,产物中则出现氮氧化硅,随着原料氧含量增加,氮氧化硅含量明显上升。当硅原料氧含量低于5.61%时,残留硅含量随氧含量增加明显减少,说明原料中氧的增加可以显著加快氮化速率,降低氮化产物中残留硅的含量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰宇
李兵
周子皓
张以纯
尹传强
魏秀琴
周浪
关键词:  α-氮化硅  氧含量  直接氮化法  高纯硅粉  氮氧化硅    
Abstract: The effects of surface oxygen content on the nitridation of high-purity silicon powders were studied, high-α phase silicon nitride was prepared via direct nitridation process of silicon powders in the N2/H2 atmosphere.The results show that the content of α-Si3N4 in nitridation products tended to increase first and then decrease with the increase of the oxygen content on the silicon surface. When the surface oxygen content of silicon powders was 3.91%, the α-Si3N4 content of nitridation products could reach 97%, the residual silicon content was lower than 1% and the oxygen content in central region was 1.71%, the micrograph morphology of nitridation products mainly composed of rod shaped α-Si3N4 whisker which was formed by chemical vapor deposition at 1 350 ℃ for 3 hours in the N2/H2 atmosphere. When the surface oxygen content of silicon powders was lower than 4.38%, all the content of the α-Si3N4 in nitridation products was over 95%, a small amount of β-Si3N4 and residual silicon phase, which was examined by XRD, can be observed, but no silicon oxynitride. While the oxygen content of silicon powders was higher than 5.61%, the content of silicon oxynitride increased obviously with the increase of oxygen content. While the oxygen content of silicon powders was lower than 5.61%, the residual silicon of nitridation products decreased significantly with the increase of oxygen content, which showed that the increase of oxygen in silicon powders could accelerate the nitridation rate significantly and then reduce the content of residual silicon in nitridation products.
Key words:  α-silicon nitride    oxygen content    direct nitridation    high-purity silicon    silicon oxynitride
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TQ174  
基金资助: 江西省优势科技创新团队计划专项(20113BCB24007);有色金属及特色材料加工重点实验室开放基金(12KF-20);南昌大学研究生创新专项资金立项项目(CX2016017)
通讯作者:  周浪:通信作者,男,1962年生,博士,教授,研究方向为光伏材料与器件 E-mail:lzhou@ncu.edu.cn   
作者简介:  兰宇:男,1992年生,硕士研究生,研究方向为氮化硅粉体合成 E-mail:lanyuncu@163.com
引用本文:    
兰宇, 李兵, 周子皓, 张以纯, 尹传强, 魏秀琴, 周浪. 表面氧含量对高纯硅粉高温氮化行为的影响[J]. 材料导报, 2018, 32(16): 2719-2722.
LAN Yu, LI Bing, ZHOU Zihao, ZHANG Yichun, YIN Chuanqiang, WEI Xiuqin, ZHOU Lang. Effects of Surface Oxygen Content on the High-temperature Nitridation of High-purity Silicon Powders. Materials Reports, 2018, 32(16): 2719-2722.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.003  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2719
1 Hampshire S. Silicon nitride ceramics-review of structure, proces-sing and properties[J]. Journal of Achievements in Materials and Manufacturing Engineering,2007,24(1):43.
2 Bocanegra-Bernal M H, Matovic B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures[J]. Materials Science and Engineering: A,2010,527(6):1314.
3 Riley F L. Silicon nitride and related materials[J]. Journal of the American Ceramic Society,2000,83(2):245.
4 Ren H, Zhang L, Su K, et al. Thermodynamic study on the chemical vapor deposition of silicon nitride from the SiCl4-NH3-H2 system[J]. Computational and Theoretical Chemistry,2015,1051:93.
5 Sahu B B, Shin K S, Han J G. Integrated approach for low-temperature synthesis of high-quality silicon nitride films in PECVD using RF-UHF hybrid plasmas[J]. Plasma Sources Science and Technology,2016,25(1):015017.
6 Ziegenbalg G, Breuel U, Ebrecht E, et al. Synthesis of α-silicon nitride powder by gas-phase ammonolysis of CH3SiCl3[J]. Journal of the European Ceramic Society,2001,21(7):947.
7 Park Y J, Park M J, Kim J M, et al. Sintered reaction-bonded silicon nitrides with high thermal conductivity: The effect of the star-ting Si powder and Si3N4 diluents[J]. Journal of the European Ceramic Society,2014,34(5):1105.
8 Pavarajarn V, Kimura S. Catalytic effects of metals on direct nitridation of silicon[J]. Journal of the American Ceramic Society,2001,84(8):1669.
9 Dervišbegovic H, Riley F L. The role of hydrogen in the nitridation of silicon powder compacts[J]. Journal of Materials Science,1981,16(7):1945.
10 Pigeon R G, Varma A, Miller A E. Some factors influencing the formation of reaction-bonded silicon nitride[J]. Journal of Materials Science,1993,28(7):1919.
11 Yao G, Li Y, Jiang P, et al. Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation[J]. Solid State Sciences,2017,66:50.
12 Vongpayabal P, Kimura S. Kinetics of SiO vapor ammonolysis for nano-sized silicon nitride powder synthesis[J]. Powder technology,2005,156(2):73.
13 Lin D, Kimura S. Kinetics of silicon monoxide ammonolysis for nanophase silicon nitride synthesis[J]. Journal of the American Ceramic Society,1996,79(11):2947.
14 Wen Y, Xia D, Xuan W. Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition[J]. Aerosol Science and Technology,2017,51(7):845.
15 Parikh R S, Lightfoot A, Haggerty J S, et al. Effects of trace O2 levels on the nitriding kinetics of high-purity silicon powders[J]. Journal of the American Ceramic Society,1999,82(10):2626.
16 Campos-Loriz D, Riley F L. The effect of silica on the nitridation of silicon[J]. Journal of Materials Science,1976,11(1):195.
17 Rahaman M N, Moulson A J. The removal of surface silica and its effect on the nitridation of high-purity silicon[J]. Journal of Mate-rials Science,1984,19(1):189.
18 Shaw N J. The combined effects of Fe and H2 on the nitridation of silicon[J]. Journal of Materials Science Letters,1982,1(8):337.
19 Campos-Loriz D, Riley F L. The effects of hydrogen on the nitridation of silicon[J]. Journal of Materials Science,1979,14(4):1007.
20 Jovanovic Z, Kimura S. Use of two-phase standards of unknown compositions to determine calibration constants for powder XRD by linear regression[J]. Journal of the American Ceramic Society,1994,77(8):2226.
21 Rakshit J, Das P K. Optimization of time-temperature schedule for nitridation of silicon compact on the basis of silicon and nitrogen reaction kinetics[J]. Bulletin of Materials Science,2000,23(4):249.
22 Barsoum M, Kangutar P, Koczak M J. Nitridation mechanisms of silicon powder compacts[C]//13th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2: Ceramic Engineering and Science Proceedings, Volume 10.John Wiley & Sons,2009:794.
23 Jennings H M. On reactions between silicon and nitrogen[J]. Journal of Materials Science,1983,18(4):951.
24 Riley F L. Reaction bonded silicon nitride[C]//Materials Science Forum. Trans Tech Publications,1989,47:70.
25 叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002:13.
[1] 张昊, 胡强, 张少明, 盛艳伟, 赵新明, 贺会军. 水雾化法制备FeSiCr软磁合金粉末研究[J]. 材料导报, 2018, 32(20): 3590-3594.
[2] 李兵, 周子皓, 尹传强, 魏秀琴, 周浪. 氧化硅形态对合成氮氧化硅粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 114-118.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed