Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 20120251-9    https://doi.org/10.11896/cldb.20120251
  金属与金属基复合材料 |
等离子球磨技术在材料制备中的应用
刘员环1,2, 曾美琴1,2, 鲁忠臣2,3,*, 朱敏1,2
1 华南理工大学材料科学与工程学院,广州 510640
2 广东省先进储能材料重点实验室,广州 510640
3 华南理工大学机械与汽车工程学院,广州 510640
Applications of Plasma Milling in Materials Preparation
LIU Yuanhuan1,2, ZENG Meiqin1,2, LU Zhongchen2,3,*, ZHU Min1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640, China
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 9479KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有大规模量产潜力的高能球磨技术自诞生以来,引起了人们极大的兴趣。但是,传统的高能球磨依靠单一的机械能输入,存在效率低、能耗高、粉末污染等问题。在球磨过程中引入其他能量场实现的外场辅助球磨对解决上述问题具有重要意义。与传统高能球磨相比,外场辅助球磨具有两大应用优势:(1)球磨时间明显缩短;(2)可以合成特殊化合物。
目前常用的外能量场包括超声波、磁场、温度场、电场和等离子体。利用介质阻挡放电,将大面积的冷场等离子体引入球磨过程所发展的等离子球磨技术可以实现球磨效率、球磨产能和工艺可控性三方面的提升。当前等离子球磨技术应用已涉及诸多材料体系,但是由于冷场等离子体的复杂性和非热平衡特性,等离子体、等离子体-机械力耦合对材料合金化特点和反应机制的影响仍是重点研究内容。近年来,研究人员针对不同的材料体系发挥等离子球磨效能的工作取得了一定的进展。
本文主要介绍等离子球磨技术的基本原理、特点及其在多种材料制备中的应用,重点分析等离子球磨所制备的材料的特殊结构、优异性能及其组织结构形成机制。针对当前的研究进展,本文还总结了等离子球磨技术的发展前景和面临的挑战,旨在为等离子球磨制备高性能材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘员环
曾美琴
鲁忠臣
朱敏
关键词:  等离子球磨  机械合金化  冷场等离子体  反应合成  机械力化学    
Abstract: High-energy ball milling technology with large-scale production potential has attracted great interest of researchers since its birth. However, the monolithic mechanical energy acts as input in the conventional ball milling process, which has some problems such as low efficiency, high energy consumption and powder contamination. In order to solve the above problems, it is of great significance to introduce external energy fields into ball milling process. In comparison with the conventional ball milling, external field-assisted ball milling has two advantages: (ⅰ) the milling time is significantly shortened; (ⅱ) special compounds can be synthesized.
At present, the commonly used external energy fields including ultrasonic, magnetic, temperature, electric and plasma were introduced into ball milling. Among them, plasma milling technology has been developed by introducing large area of dielectric barrier discharge plasma into milling process, which achieved the improvement of milling efficiency, milling capacity and process controllability. Many material systems have been involved in the application of plasma milling technology. However, due to the complexity and non-thermal equilibrium characteristics of cold plasma, the influence of plasma and coupling of plasma and mechanical force on the alloying characteristics and reaction mechanism of materials is still the key research content. In recent years, researchers have made great progress in fabricating different material systems through plasma milling.
The basic principle and characteristics of plasma milling and its applications in the preparation of various materials have been briefly introduced, and the special structure, excellent performance and corresponding formation mechanism of materials prepared by plasma milling are described. In view of the current research progress, the development prospects and challenges of plasma milling technology are also summarized, aiming to provide a reference for fabricating the high-performance materials by plasma milling.
Key words:  plasma milling    mechanical alloying    cold plasma    reaction synthesis    mechanochemistry
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TB44  
基金资助: 广州市科技计划项目(201904020018);广东省自然科学基金(2020A1515011548);中央高校基本业务费(SCUT-2019CG24)
通讯作者:  *mezclu@scut.edu.cn   
作者简介:  刘员环,2018年6月毕业于重庆大学,获得工学学士学位。现为华南理工大学材料科学与工程学院硕士研究生,研究方向为等离子球磨的应用。
鲁忠臣,华南理工大学机械与汽车工程学院副教授。2013年9月毕业于华南理工大学材料加工工程专业,硕博连读获得工学博士学位。主要研究以领域为等离子球磨技术、纳米相复合结构及性能。以第一/通讯作者发表SCI论文20余篇,授权国家发明专利18项,申请PCT专利4项,授权美国专利2项,授权日本专利1项,授权欧洲专利1项。
引用本文:    
刘员环, 曾美琴, 鲁忠臣, 朱敏. 等离子球磨技术在材料制备中的应用[J]. 材料导报, 2022, 36(15): 20120251-9.
LIU Yuanhuan, ZENG Meiqin, LU Zhongchen, ZHU Min. Applications of Plasma Milling in Materials Preparation. Materials Reports, 2022, 36(15): 20120251-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120251  或          http://www.mater-rep.com/CN/Y2022/V36/I15/20120251
1 Zhu M, Lu Z C, Hu R Z, et al. Acta Metallurgica Sinica, 2016, 52(10), 1239(in Chinese).
朱敏, 鲁忠臣, 胡仁宗, 等.金属学报, 2016, 52(10), 1239.
2 Suryanarayana C. Progress in Materials Science, 2001, 46(1), 1.
3 Lin W S. Powder Metallurgy Technology, 2001(3), 178(in Chinese).
林文松.粉末冶金技术, 2001(3),178.
4 Chen Z H, Chen D. Mechanical alloying and solid-liquid reaction ball milling, Chemical Industry Press, China, 2005(in Chinese).
陈振华, 陈鼎.机械合金化与固液反应球磨, 化学工业出版社, 2005.
5 Chen D, Li D, Kang Z. Ultrasonics Sonochemistry, 2013, 20(6), 1337.
6 Chelvane J A, Palit M, Basumatary H, et al. Journal of Magnetism and Magnetic Materials, 2013, 343, 144.
7 Dai L Y, Zeng M Q, Tong Y Q, et al. Journal of Functional Materials, 2005, 36(8), 1158(in Chinese).
戴乐阳, 曾美琴, 童燕青, 等. 功能材料, 2005, 36(8), 1158.
8 Calka A, Wexler D. Nature, 2002, 419, 147.
9 Quan Y, Zheng Y, Yu H Z. Transactions of Nonferrous Metals Society of China, 2011, 21(7), 1545.
10 Li H P, Yu D R, Sun W T, et al. High Voltage Technology, 2016, 42(12), 3697(in Chinese).
李和平, 于达仁, 孙文廷, 等. 高电压技术, 2016, 42(12), 3697.
11 Liu G, Ning P, Li K, et al. Progress in Chemical Industry, 2015, 34(7), 1905(in Chinese).
刘贵, 宁平, 李凯, 等. 化工进展, 2015, 34(7), 1905.
12 Dou S, Tao L, Wang R, et al. Advanced Materials, 2018, 30(21), 189.
13 Xu L. Plasma treatment of modified Co3O4 nanosheets and its application in electrocatalytic oxygen evolution. Master's Thesis, Hunan University, China, 2017(in Chinese).
徐磊. 等离子体处理改性四氧化三钴纳米片及其在电催化氧析出中的应用研究. 硕士学位论文, 湖南大学, 2017.
14 Samaranayake W J M, Miyahara Y, NamIhira T, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(4), 687.
15 Mizushima T, Matsumoto K, Sugoh J, et al. Applied Catalysis A: Gene-ral, 2004, 265(1), 53.
16 Dai L Y. Research on dielectric barrier discharge plasma assisted high energy ball milling. Ph.D. Thesis, South China University of Technology, China, 2006(in Chinese).
戴乐阳. 介质阻挡放电等离子体辅助高能球磨的研究. 博士学位论文, 华南理工大学, 2006.
17 Wang X X. High Voltage Technology, 2009, 35(1), 1(in Chinese).
王新新.高电压技术, 2009, 35(1), 1.
18 Ji G P, He X F, Liao H F, et al. Materials Engineering, 2019, 47(6), 114(in Chinese).
冀光普, 何秀芳, 廖海峰, 等. 材料工程, 2019, 47(6), 114.
19 Wei Y K, Liao H F, Yan H T, et al. Materials Reports B: Research Papers, 2020, 34(7), 14039(in Chinese).
魏钰坤, 廖海峰, 颜海涛, 等. 材料导报:研究篇, 2020, 34(7), 14039.
20 Yan J, Dai L Y, Meng R G, et al. Acta Tribology, 2016, 36(1), 20(in Chinese).
闫锦, 戴乐阳, 孟荣刚, 等. 摩擦学学报, 2016, 36(1), 20.
21 Deng D, Yu L, Pan X, et al. Chemical Communications, 2011, 47(36), 10016.
22 Sun W. Structural design and electrochemical performance of silicon-carbon composite anode materials for lithium-ion batteries.Ph.D. Thesis, South China University of Technology, China, 2017(in Chinese).
孙威. 锂离子电池硅碳复合负极材料的结构设计与电化学性能. 博士学位论文, 华南理工大学, 2017.
23 Lin C, Yang L, Ouyang L Z, et al. Journal of Alloys and Compounds, 2017, 728, 578.
24 Wang Y, Yang L, Hu R, et al. Journal of Power Sources, 2015, 288, 314.
25 Chen Z, Pei W, Zhang S Z, et al. Materials Science and Engineering A, 2019, 769, 138484.
26 Dong Z L, Peng Y F, Zhang X H, et al. Composites Communications, 2021, 24, 100619.
27 Ma Z L. Modification of sulfur/graphene and optimization of electrode structure and its application in lithium-sulfur batteries. Master's Thesis, Hunan University, China, 2017(in Chinese).
马兆玲. 硫/石墨烯的修饰和电极结构优化及在锂-硫电池中的应用. 硕士学位论文, 湖南大学, 2017.
28 Liu Y X, Lu Z C, Cui J, et al. Electrochimica Acta, 2019, 310, 26.
29 Lin C, Ouyang L Z, Zhou C J, et al. Journal of Power Sources, 2019, 443, 227276.
30 Yang L L. Preparation of few-layer graphene and its composite materials by plasma-assisted ball milling. Master's Thesis, South China University of Technology, China, 2016(in Chinese).
杨伶俐. 等离子体辅助球磨制备少层石墨烯及其复合材料. 硕士学位论文, 华南理工大学, 2016.
31 Liu H. Structure and performance of tin and silicon-based anode materials for lithium-ion batteries. Ph.D. Thesis, South China University of Techno-logy, China, 2016(in Chinese).
刘辉. 锂离子电池锡、硅基负极材料的结构与性能. 博士学位论文, 华南理工大学, 2016.
32 Cheng D L, Liu J W, Li X, et al. Journal of Power Sources, 2017, 350, 1.
33 Ouyang L Z, Jiang W B, Chen Z J. Mechatronic Engineering Technology, 2019, 48(5), 1(in Chinese).
欧阳柳章, 蒋文斌, 陈祖健. 机电工程技术, 2019, 48(5), 1.
34 Lu Z C, Zeng M Q, Wang W, et al. Cemented Carbide, 2020, 37(1), 1(in Chinese).
鲁忠臣, 曾美琴, 王为, 等. 硬质合金, 2020, 37(1), 1.
35 Zeng M Q, Tu J L, Zhu M, et al. Metals and Materials International, 2020, 26(9), 1373.
36 Chen Z J. Preparation of carbides and carbonitrides by plasma-assisted ball milling. Master's Thesis, South China University of Technology, China, 2019(in Chinese).
陈祖健. 等离子体辅助球磨制备碳化物和碳氮化物. 硕士学位论文, 华南理工大学, 2019.
37 Li J, Fu Z Y, Wang W M, et al. Journal of the Chinese Ceramic Society, 2010, 38(5), 979(in Chinese).
李静, 傅正义, 王为民, 等. 硅酸盐学报, 2010, 38(5), 979.
38 Li Y, Zeng M Q, Liu J W, et al. Ceramics International, 2018, 44(15), 18329.
39 Liu Z, Dai L, Yang D, et al. Materials Research Bulletin, 2015, 61, 152.
40 Katter M, Wecker J, Schultz L. Journal of Applied Physics, 1991, 70, 3188.
41 Xu K, Liu Z W, Yu H Y, et al. Journal of Magnetism and Magnetic Materials, 2020, 500, 166383.
42 Ouyang L Z, Cao Z J, Wang H, et al. Journal of Alloys and Compounds, 2017, 691, 422.
43 Lu Y S, Zhu M, Wang H, et al. International Journal of Hydrogen Energy, 2014, 39(26), 14033.
44 Lang C G, Ouyang L Z, Wang H, et al. International Journal of Hydrogen Energy, 2018, 43(36), 17346.
45 Ma M L, Yang L L, Ouyang L Z, et al. Energy, 2019, 167, 1205.
46 Ouyang L Z, Cao Z J, Wang H, et al. Journal of Alloys and Compounds, 2014, 586, 113.
47 Cao Z J, Ouyang L Z, Wu Y Y, et al. Journal of Alloys and Compounds, 2015, 623, 354.
48 Cao Z J, Ouyang L Z, Li L L, et al. International Journal of Hydrogen Energy, 2014, 39, 12765.
[1] 潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
[2] 崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
[3] 张超凡, 管学茂, 张海波, 勾密峰, 胡恩立, 王恒. 机械力化学改性钙基膨润土提高注浆材料的稳定性[J]. 材料导报, 2019, 33(20): 3408-3412.
[4] 颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
[5] 王胜民, 赵晓军, 何明奕. 机械镀技术的现状及发展*[J]. 《材料导报》期刊社, 2017, 31(5): 117-122.
[6] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed