Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20096-20102    https://doi.org/10.11896/cldb.19090142
  金属与金属基复合材料 |
块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为
崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳
沈阳师范大学化学与化工学院,沈阳 110034
Electrochemical Corrosion Behavior of Nanocrystalline Fe-50Cu Bulk Alloys in H2SO4 Solutions
CUI Tianlu, CAO Zhongqiu, JIA Zhongqiu, YU Jiarui, XU Huan, ZHANG Ke, WANG Yan
College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
下载:  全 文 ( PDF ) ( 3820KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电化学方法,通过测试开路电位、极化曲线和交流阻抗谱等研究了粉末冶金法(PM)制备的一种常规尺寸以及液相还原法(LPR)和机械合金化法(MA)热压制备的两种纳米晶块体Fe-50Cu合金在不同浓度H2SO4溶液中的电化学腐蚀行为及显微组织对其腐蚀性能的影响。结果表明:三种不同方法制备的Fe-50Cu合金的腐蚀电流密度均随着H2SO4溶液浓度的增加而增大,腐蚀速度变快。三种Fe-50Cu合金的交流阻抗谱均由单容抗弧组成,表明腐蚀过程受电化学反应控制,它们的传递电阻随着H2SO4溶液浓度的增加而减小。在相同浓度的H2SO4溶液中,晶粒细化后,合金的腐蚀电流密度增加,合金耐蚀性能下降。纳米晶LPR Fe-50Cu合金的腐蚀电流密度比纳米晶MA Fe-50Cu合金大,传递电阻和活化能比纳米晶MA Fe-50Cu合金小。因此,其腐蚀速率比纳米晶MA Fe-50Cu合金快。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔田路
曹中秋
贾中秋
于佳蕊
徐欢
张轲
王艳
关键词:  腐蚀电化学  纳米晶  Fe-Cu合金  显微组织  机械合金化  液相还原    
Abstract: The electrochemical corrosion properties and effect of microstructures on them of a coarse grained and two nanocrystalline Fe-50Cu bulk alloys prepared by powders metallurgy (PM) as well as the liquid phase reduction (LPR) and mechanical alloying (MA) methods with hot pressing, respectively, were investigated in H2SO4 solutions by means of electrochemical methods through measuring open circuit potentials, potentiodynamic polarization, electrochemical impedance spectroscopies, and so on. The results show that the corrosion current densities of three Fe-50Cu alloys prepared by the different methods increase with the increment of H2SO4 solution concentrations. Their electrochemical impedance spectroscopies are composed of a single capacitive arc, indicating the corrosion processes are controlled by the electrochemical reactions. The changed trend of charge transfer resistances of three Fe-50Cu alloys is adverse to that of corrosion current densities. In the same H2SO4 solution concentrations, the corrosion current densities increase and therefore corrosion properties decrease when the grain sizes are decreased. The corrosion current densities of LPR Fe-50Cu alloy are larger, the activation energies and charge trnasfer resistances are lower and therefore its corrosion rates are faster than those of nanocrystalline MA Fe-50Cu alloy.
Key words:  electrochemical corrosion    nanocrystalline    Fe-Cu alloy    microstructure    mechanical alloying    liquid phase reduction
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TG113.23  
基金资助: 国家自然科学基金(51271127;51501118);辽宁省重点研发计划项目(2018304025);辽宁省教育厅科研项目(LJC201911)
通讯作者:  caozhongqiu6508@sina.com   
作者简介:  崔田路,2018年6月毕业于沈阳师范大学,获得硕士学位,目前正在东北大学攻读材料科学与工程博士学位。主要从事纳米材料的制备工艺及腐蚀性能与防护技术的研究工作。
曹中秋,沈阳师范大学,教授,硕士生导师。2001年毕业于中国科学院金属研究所,获材料科学与工程博士学位,同年加入沈阳师范大学工作至今。主要从事特种材料的制备及腐蚀与防护的研究工作。在国内外重要期刊发表学术论文100多篇,获批国家发明专利8项。
引用本文:    
崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
CUI Tianlu, CAO Zhongqiu, JIA Zhongqiu, YU Jiarui, XU Huan, ZHANG Ke, WANG Yan. Electrochemical Corrosion Behavior of Nanocrystalline Fe-50Cu Bulk Alloys in H2SO4 Solutions. Materials Reports, 2020, 34(20): 20096-20102.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090142  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20096
1 Gleiter H. Progress in Materials Science, 1989, 33(4), 223.
2 Lu K. Journal of Materials & Technology, 1999, 15(3), 193.
3 Koch C C. Journal of Materials Science, 2007, 42(5), 1403.
4 Hahn E N, Meyers M A. Materials Science and Engineering A, 2015, 646, 101.
5 Zeiger W, Schneider M, Scharnweber D. Nanostructured Materials, 1995, 6(5-8), 1013.
6 Li Y, Wang F H, Liu G. Corrosion, 2004, 60(10), 891.
7 Youssef K M S, Koch C C, Fedkiw P S. Corrosion Science, 2004, 46(1), 51.
8 Mishra R, Balasubramaniam R. Corrosion Science, 2004, 46(12), 3019.
9 Meng G Z, Li Y, Wang F H. Electrochimca Acta, 2006, 51(20), 4277.
10 Tavoosi M, Barahimi A. Surfaces and Interfaces, 2017, 8, 103.
11 Barbucci A, Farne G, Matteazzi P, et al. Corrosion Science, 1999, 41, 463.
12 Li X L, Li Y, Wang F H, et al. Journal of Chinese Society for Corrosion and Protection, 2002, 22(6), 326(in Chinese).
李雪莉, 李瑛, 王福会, 等. 中国腐蚀与防护学报, 2002, 22(6), 326.
13 Lyu H B, Li Y, Wang F H. Journal of Chinese Society for Corrosion and Protection, 2006, 26(3), 171(in Chinese).
吕海波, 李瑛, 王福会. 中国腐蚀与防护学报, 2006, 26(3), 171.
14 Mosavat S H, Shariat M H, Bahrololoom M E. Corrosion Science, 2012, 59, 81.
15 Wang S G, Sun M, Xu Y H, et al. Journal of Materials Science & Technology, 2018, 34(12), 2498.
16 Wang X Y, Li D J. Electrochimica Acta, 2002, 47(24), 3939.
17 Djordje M, Joachim G, Rainer S F. Acta Materialia, 2008, 56(18), 5214.
18 Neumann H, Plevachuk Y, Allenstein F. Materials Science and Enginee-ring A, 2003, 361(1/2), 155.
19 Jia Z Q. Studies on corrosion properties of binary two-phase bulk nanocrystalline Ag-25Ni alloy. Master’s Thesis, Shenyang Normal University, China, 2017(in Chinese).
贾中秋. 二元双相块体纳米晶Ag-25Ni合金腐蚀性能研究. 硕士学位论文, 沈阳师范大学, 2017.
20 Kim J C, Ko B H, Moon I H. Nanostructured Materials, 1996, 7(8), 887.
21 Kawamura M, Yamaguchi M, Abe Y, et al. Microelectronic Engineering, 2005, 82(3-4), 277.
22 Sun Z B, Guo J, Song X P, et al. Journal of Alloys and Compounds, 2008, 455(1-2), 243.
23 Nevesi I. In: Proceedings of 13th ICEC. Piscateway, USA, 1986, pp. 221.
24 Wang C L, Lin S Z, Niu Y, et al. Applied physics A-Materials Science & ProcessingA, 2003, 76(2), 157.
25 Nandi A, Gupta M D, Banthia A K. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2002, 197, 119.
26 Zhu H T, Zhang C Y, Yin Y S. Journal of Crystal Growth, 2004, 270, 722.
27 Cao Z Q, Zhu X M, Li F C. Rare Metal materials and Engineering, 2008,37(7), 1221(in Chinese).
曹中秋, 祝溪明, 李凤春. 稀有金属材料与工程, 2008, 37(7), 1221.
28 Cui T L. The electrochemical corrosion behavior of nanocrystalline bulk Fe-50Cu alloys. Master’s Thesis, Shenyang Normal University, China, 2018(in Chinese).
崔田路.纳米晶Fe-50Cu块体合金腐蚀电化学性能研究.硕士学位论文,沈阳师范大学,2018.
[1] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[2] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[3] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[4] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[5] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[6] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[7] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[8] 张帅, 李全安, 朱宏喜, 陈晓亚, 王颂博, 关海昆. 热处理对Mg-11Gd-3Y-0.6Ca-0.5Zr合金显微组织和腐蚀行为的影响[J]. 材料导报, 2020, 34(20): 20070-20075.
[9] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[10] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[11] 何柔月, 黄启波, 崔洪波, 唐鑫. 含微量铒元素Al-5.5Mg-1Zn焊丝焊接7075铝合金TIG焊缝的组织和性能[J]. 材料导报, 2020, 34(18): 18125-18130.
[12] 李萌, 弓满锋, 张程煜, 莫德云, 李玫, 韩栋, 张洪军. 超细、纳米晶WC-Co硬质合金烧结技术的研究现状[J]. 材料导报, 2020, 34(15): 15138-15144.
[13] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[14] 陶博浩, 李菊, 张彦华. TA19双态组织钛合金线性摩擦焊接头的组织结构及演化行为[J]. 材料导报, 2020, 34(14): 14147-14153.
[15] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed