Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15138-15144    https://doi.org/10.11896/cldb.19050188
  金属及金属基复合材料 |
超细、纳米晶WC-Co硬质合金烧结技术的研究现状
李萌1,2, 弓满锋1, 张程煜2, 莫德云1, 李玫2, 韩栋2, 张洪军1
1 岭南师范学院机电工程学院,湛江 524048
2 西北工业大学超高温结构复合材料国家级重点实验室,西安 710072
Research Progress of Sintering Technique of Ultrafine and Nano WC-Co Cemented Carbides
LI Meng1,2, GONG Manfeng1, ZHANG Chengyu2, MO Deyun1, LI Mei2, HAN Dong2, ZHANG Hongjun1
1 School of Mechanical and Electrical Engineering, Lingnan Normal University, Zhanjiang 524048, China
2 Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 3273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 WC-Co硬质合金因高硬、耐磨而在切削、釆矿和耐磨零件等领域广泛应用。研究发现,当WC晶粒尺寸小于0.5 μm时(即超细、纳米晶WC-Co硬质合金),与普通硬质合金相比,材料的硬度和强度显著提高,其韧性也同样会有所提升。因此,晶粒细化有助于改善硬质合金的力学性能,从而延长其使用寿命。长期以来,有关硬质合金性能改善方面的研究多关注于从粉体出发,即通过采用超细纳米粉体和合理烧结工艺来实现超细晶和纳米结构硬质合金的制备。然而,在合金制备过程中其致密性与晶粒长大之间往往存在较为复杂的交互作用,如何保证在烧结过程中致密化的同时抑制WC晶粒长大是提高合金性能以及保证合金质量稳定性的关键技术问题之一。本文主要阐述了高温液相烧结制备超细、纳米晶WC-Co硬质合金过程中有关致密化和晶粒长大机制之间的关联性,从烧结工艺与添加剂两方面介绍了近年来国内外的研究现状。烧结工艺具体分为常规烧结工艺(主要包括氢气烧结、真空烧结和热等静压烧结等)和快速烧结工艺(主要包括微波烧结、放电等离子烧结、高频感应热烧结等),对比了上述烧结工艺之间的不同以及总结了不同烧结工艺的优缺点。在添加剂方面,重点介绍了过渡族碳化物和稀土元素对硬质合金烧结过程中晶粒生长的抑制作用,并在此基础上阐述了超细、纳米晶WC-Co硬质合金烧结技术的未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李萌
弓满锋
张程煜
莫德云
李玫
韩栋
张洪军
关键词:  超细、纳米晶  WC-Co硬质合金  烧结技术    
Abstract: WC-Co cemented carbides are widely used in many industries such as cutting, mining and wear-resistant parts on account of their high hardness and wear resistance. It is noticed that when the grain size of WC is less than 0.5 μm (ultrafine and nano WC-Co cemented carbides), the hardness and strength of the material are significantly improved compared with those of conventional cemented carbide, and its toughness is also improved. Therefore, grain refinement is helpful to improve the mechanical properties and the service life of the cemented carbide. For a long time, the researches on improving the properties of cemented carbides are focused on the preparation of ultrafine and nano structured cemented carbides by using ultrafine and nano powders and reasonable sintering process. However, there is an interaction between densification and grain growth during the preparation process of cemented carbides. How to achieve the coordinated control of the densification and the grain growth of cemented carbides has been a key issue for the properties improvement and the ensurance of quality stability. The mechanisms of the densification and grain growth during the sintering process of ultrafine and nano WC-Co cemented carbides are firstly introduced, and then the studies on the sintering technologies and additives are reviewed. The sintering process is introduced in two aspects: conventional sintering techniques and fast sintering techniques. The conventional sintering process mainly includes hydrogen sintering, vacuum sintering, hot isostatic pres-sing and the fast sintering techniques mainly includes microwave sintering(MS), spark plasma sintering(SPS), high frequency induction-heated sintering(HFIHS). Moreover, the differences between the above sintering processes are compared. As for the additives, the inhibiting effects of carbides of transition metals and rare-earth elements on grain growth during sintering process of cemented carbides are introduced. On this basis, the development trends on the sintering technologies of ultrafine and nano WC-Co cemented carbides are summarized.
Key words:  ultrafine and nano crystal    WC-Co cemented carbides    sintering technique
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TG125.3  
基金资助: 国家自然科学基金(51705228); 广东省自然科学项目(2018A030307017;2016KTSCX079;2016KQNCX097);广东省扬帆计划引进创新创业团队专项资助项目(2014YT02C049);湛江市财政科技专项竞争性分配项目(2017A02021)
通讯作者:  gongmanfeng@163.com   
作者简介:  李萌,2017年6月毕业于太原科技大学,获得工学硕士学位。现为西北工业大学材料学院博士研究生。在张程煜教授与弓满锋教授的指导下开展研究。目前主要研究领域为WC-Co硬质合金制备及其性能。
弓满锋,博士(后),岭南师范学院机电工程学院教授,1973年3月生,陕西省宝鸡市人,硕士研究生导师。1996年本科毕业于四川大学,2002年硕士毕业于大连理工大学,2009年博士毕业于西北工业大学,2015年博士后出站于广东工业大学。主要从事硬质合金刀具制备及其性能表征、硬质涂层制备及性能表征、高性能功能陶瓷制备及性能表征,有限元分析及结构优化以及陶瓷机械加工工艺设备开发研究。近年来先后在Journal of Refractory Metals & Hard Materials、Surface Engineering、Journal of Ceramic Process Rearsch、《机械工程学报》《材料科学与工艺》等刊物上发表学术论文60余篇,SCI/EI收录30余篇。
引用本文:    
李萌, 弓满锋, 张程煜, 莫德云, 李玫, 韩栋, 张洪军. 超细、纳米晶WC-Co硬质合金烧结技术的研究现状[J]. 材料导报, 2020, 34(15): 15138-15144.
LI Meng, GONG Manfeng, ZHANG Chengyu, MO Deyun, LI Mei, HAN Dong, ZHANG Hongjun. Research Progress of Sintering Technique of Ultrafine and Nano WC-Co Cemented Carbides. Materials Reports, 2020, 34(15): 15138-15144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050188  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15138
1 Spriggs G E. International Journal of Refractory Metals & Hard Materials, 1995, 13(95),241.2 Upadhyaya G S. Materials and Design, 2001, 22(6), 483.3 Han F L, Ma F K. China material engineering canon: materials enginee-ring of powder Metallurgy. Chemical Industry Press, 2005 (in Chinese).韩凤麟, 马福康. 中国材料工程大典: 粉末冶金材料工程,化学工业出版社, 2005.4 Sarin V K. Advanced Powder Technology, 1981, 10, 253.5 Roebuck B. London NPL Measurement Note 03, UK, 2001.6 Grearson A, James M, Norgren S, et al. In: Proceedings of the 16th International Plansee Seminar. Austria, 2005, pp. 314.7 Zhang F L, Wang C Y, Zhu M.Scripta Materialia, 2003, 49(11):1123 8 Porat R, Berger S, Rosen A. Materials Science Forum, 1996, 225-227,20.9 Rumman M R, Xie Z, Hong S J, et al. Materials & Design, 2015, 68:221.10 Gille G, Bredthauer J, Gries B, et al. International Journal of Refractory Metals & Hard Materials, 2000, 18(2-3),87.11 Zhang L, Chen S, Liu G, et al. Materials Review, 2005, 19(11),4(in Chinese).张立, 陈述, 刘刚, 等. 材料导报, 2005, 19(11),4.12 Fang Z Z, Wang X, Ryu T, Hwang K S, et al. International Journal of Refractory Metals & Hard Materials, 2009, 27(2),288.13 Liu W B, Song X Y, Zhang J X, et al. International Journal of Refractory Metals & Hard Materials, 2009, 27(1),115.14 Fang Z Z, Wang H. International Materials Reviews, 2008, 53(6),326.15 Fang Z, Maheshwari P, Wang X, et al. International Journal of Refractory Metals & Hard Materials, 2005, 23(4-6),249.16 Porat R, Berger S, Rosen A. Nanostructured Materials, 1996, 7(4),429.17 Goren-Muginstein G R, Berger S, Rosen A. Nanostructured Materials, 1998, 10(5),795.18 Schubert W D. In: 2000 International Conference on Tungsten Hard Metals and Refractory Alloys, Annapolis, MD, USA, 2000.19 Petersson A, Agren J. Acta Materialia, 2005, 53 (6),1673.20 Ou X Q. Investigation of fabrication, microstructruers and mechanical properties of ultra-fine grained WC-Co alloys. Master's Thesis, Central South University, China, 2013 (in Chinese).欧小琴. 超细晶WC-Co硬质合金的制备、显微组织及力学性能研究. 中南大学, 2013.21 Fang Z Z, Wang H, Kumar V. International Journal of Refractory Metals and Hard Materials, 2017, 62,110.22 Mccandlish L E, Kear B H, Kim B K.Nanostructured Materials, 1992, 1(2),119.23 Wang X, Fang Z Z, Sohn H Y. International Journal of Refractory Metals and Hard Materials, 2008, 26(3),232.24 Sánchez J M, Ordóñez A, González R. International Journal of Refractory Metals & Hard Materials, 2005, 23(3),193.25 Azcona I, Ordóñez A, Sánchez J M, et al. Journal of Materials Science, 2002, 37(19),4189.26 Du W, Nie H B, Wu C X.Materials Science and Engineering of Powder Metallurgy, 2010, 15(6),650(in Chinese).杜伟, 聂洪波, 吴冲浒. 粉末冶金材料科学与工程, 2010, 15(6),650.27 Shi X L, Shao G Q, Duan X L, et al. Materials Characterization, 2006, 57(4-5),358.28 Wei C B, Song X Y, Zhao S X, et al. International Journal of Refractory Metals & Hard Materials, 2010, 28(5), 567.29 Meredith R J. Engineers' handbook of industrial microwave heating, Institution of Electrical Engineers, UK, 1998.30 Bao R. Studies on microwave sintering of WC-Co hard metals. Ph. D. Thesis, Central South University, Chian, 2013 (in Chinese).鲍瑞, WC-Co硬质合金的微波烧结制备研究. 博士学位论文, 中南大学, 2013.31 Agrawal D, Cheng J, Seegopaul P, et al. Powder Metallurgy, 2000, 43(1),15.32 Breval E, Cheng J, Agrawal D, et al. Materials. Science & Engineering: A, 2005, 391(1-2),285.33 Bao R, Yi J H, Peng Y D, et al. Transactions of the Nonferrous Metals Society of China, 2012, 22(4),110.34 Eriksson M, Radwan M, Shen Z. International Journal of Refractory Metals & Hard Materials, 2013, 36(36),31.35 Wang C, Shao G Q, Duan X L. Bulletin of the Chinese Ceramic Society, 2005, 24(1),97(in Chinese).王冲, 邵刚勤, 段兴龙. 硅酸盐通报, 2005, 24(1),97.36 Ikegaya A, Moriguchi H, Tsuduki K. Powder Metallurgy, 2000, 43(1),17.37 Garbiec D, Siwak P. Archives of Civil and Mechanical Engineering, 2019, 19(1),215.38 Wei C B, Song X Y, Fu J, et al. Materials Science & Engineering A, 2012, 552(34),427.39 Kim H C, Jeong I K, Shon I J, et al. International Journal of Refractory Metals & Hard Materials, 2007, 25(4),336.40 Kim H C, Shon I J, Munir Z A. Journal of Materials Science, 2005, 40(11),2849.41 Kim H C, Oh D Y, Shon I J. International Journal of Refractory Metals & Hard Materials, 2004, 22(4-5),197.42 Liu X W, Song X Y, Wang H B, et al. Acta Materialia, 2018, 149,164.43 Carroll D F. International Journal of Refractory Metals and Hard Mate-rials, 1999, 17(1),123.44 Schubert W D, Bock A, Lux B. International Journal of Refractory Metals and Hard Materials, 1995, 13(5),281.45 Lei Y, Sun J, Du X, et al. Rare Metals, 2007, 26(6),584.46 Huang S G, Li L, Vanmeensel K, et al. International Journal of Refractory Metals and Hard Materials, 2007, 25(5-6),417.47 Tian H, Peng Y, Du Y, et al. International Journal of Refractory Metals and Hard Materials, 2017, 69,11.48 Weidow J, Andrén H O. International Journal of Refractory Metals & Hard Materials, 2011, 29(1),38.49 Johansson S A E, Wahnström G. Current Opinion in Solid State and Materials Science, 2016, 20(5),299.50 Schubert W D, Bock A, Lux B. In: 13th International Plansee Seminar, Reutte, 1993, pp.283.51 Liu S. International Journal of Refractory Metals & Hard Materials, 2009, 27(3),528.52 Xu C H, Ai X, Huang C Z. International Journal of Refractory Metals & Hard Materials, 2001, 19(3),159.53 Stoll W M, Materkowski J P, Massa T R. Patent, EP19950103299, 1996.54 Li X, Liu Y, Hu T, et al.Philosophical Magazine Letters, 2017,97(12), 469.55 Liu Y, Li X, Zhou J, et al.International Journal of Refractory Metals and Hard Materials, 2015, 50,53.56 Zhang L, Chen S, NanQ, et al. International Journal of Refractory Metals and Hard Materials, 2013, 41,7.57 Zhang L, Wu H P, Chen S, et al. International Journal of Refractory Metals & Hard Materials, 2009, 27(6),991.58 Liu S, Huang Z L, Liu G, et al. International Journal of Refractory Metals & Hard Materials, 2006, 24(6),461.59 Chonghai X, Xing A, Chuanzhen H, et al. Chinese Rare Earths, 1997(3),55(in Chinese).许崇海,艾兴,黄传真,等. 稀土, 1997(3),55.60 Xu C, Ai X, Huang C.International Journal of Refractory Metals & Hard Materials, 2001, 19(3),159.61 Zhang L, Chen S, Cheng X, et al.Transactions of the Nonferrous Metals Society of China, 2012, 22(7),1680.62 Zhang L, Tang W, Chen S, et al. Journal of Rare Earths, 2012, 30(5),480.63 Xiong Ji, Yang Jiangao,Guo Xinghua. Materials Science & Engineering A, 1996, 209(1-2),287.
[1] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed