Research on the Large-scale Preparation of Ultrafine LaB6 Powders by Salt-assisted Combustion Synthesis and Its Sintered Properties
AN Ning1, WU Haokai1, ZHU Min2, ZHENG Yuehong1, ZHAN Faqi1, LA Peiqing1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract: LaB6 is an excellent cathode material for field emission, with strong anti-radiation and anti-poisoning pollution capabilities. It is widely used in military and high-tech fields such as aerospace, electronic industry, instrumentation and medical equipment. In this work, kilogram-scale LaB6 powders were successfully prepared by the salt-assisted combustion synthesis method. The LaB6 powder was characterized by X-ray diffraction (XRD), cold field emission scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). LaB6 particles adopted the cubic phase with the average particle size of 345—890 nm, and the purity is higher than 99.9%. Then, the LaB6 bulk materials were obtained by spark plasma sintering (SPS) and hot sintering under the same sintering pressure of 35 MPa at different sintering temperatures of 1 600—1 800 ℃ and 1 800—1 900 ℃ respectively. As a result, the sintered materials with relative densities of 93.50% and 95.75% were obtained. The Vickers hardness of the hot pressed sample at 1 900 ℃ was measured to be (14.83±1) GPa by HBRVU-187.5 Brinell Rockwell & Vickers optical hardness tester, and the flexural strength of the sample was calculated to be 137.04 MPa by the three-point bending method.
安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
AN Ning, WU Haokai, ZHU Min, ZHENG Yuehong, ZHAN Faqi, LA Peiqing. Research on the Large-scale Preparation of Ultrafine LaB6 Powders by Salt-assisted Combustion Synthesis and Its Sintered Properties. Materials Reports, 2022, 36(11): 21010240-7.
1 Liu H L, Zhang X, Ning S Y, et al. Vacuum, 2017, 143, 245. 2 Xu B, Yang X Y, Cheng H F, et al. Vacuum, 2019, 168, 108845. 3 Yu Y P, Wang S, Li W, et al. Powder Technology, 2018, 323, 203. 4 Hasan M, Sugo H, Kisi E. Journal of Alloys and Compounds, 2013, 578, 176. 5 Late D J, More M A, Misra P, et al. Ultramicroscopy,2007,107(9),825. 6 Zhang H, Tang J, Yuan J, et al. Nature Nanotechnology, 2016, 11(3), 273. 7 Zhang H, Tang J, Zhang Q, et al. Advanced Materials,2006,18(1),87. 8 Zhang H. Synthesis, characterization and field emission properties of rareearth hexaboride nanowires, UK, 2006. 9 Harutyunyan S R, Vardanyan V H, Kuzanyan A S, et al. Applied Physics Letters, 2003, 83(11), 2142. 10 Menaka, Patra R, Ghosh S, et al. Journal of Solid State Chemistry, 2012, 194, 173. 11 Gulian A, Wood K, Fritz G, et al. Nuclear Instruments and Methods in Physics Research Section A, Accelerators Spectrometers Detectors and Asso-ciated Equipment, 2000, 444(1-2), 232. 12 Ağaoğulları D, Duman I, Öveçoğlu M L. Ceramics International, 2012, 38(8), 6203. 13 Aaoullar D, Balc Z, Akaml N, et al. Ceramics International, 2019, 45(15), 18236. 14 Futamoto M, Nakazawa M, Kawabe U. Surface Science,1980,100(3),470. 15 Otani S, Nakagawa H, Nishi Y, et al. Journal of Solid State Chemistry, 2000, 154(1), 238. 16 Balakrishnan G, Lees M R, Paul D M. Journal of Crystal Growth, 2003, 256(1-2), 206. 17 Xu J Q, Zhao Y M, Zhang Q Y. Journal of Applied Physics, 2008, 104(12), 299. 18 Motojima S, Takahashi Y, Sugiyama K. Journal of Crystal Growth, 1978, 44(1), 106. 19 Wang X, Zhang J X, Yang X Y, et al. Advances in Applied Ceramics, 2017, 116(3), 132. 20 Dou Z H, Zhang T A, Zhang Z Q, et al. Transactions of Nonferrous Me-tals Society of China, 2011, 21(8), 1790. 21 Simsek T, Chattopadhyay A K, Baris M, et al. Journal of Solid State Chemistry, 2019, 276, 238. 22 Yuan Y F, Zhang L, Liang L, et al. Ceramics International, 2011, 37(7), 2891. 23 Brewer J R, Jacobberger R M, Diercks D R, et al. Chemistry of Mate-rials, 2011, 23(10), 2606. 24 Zhang M, Liang Y, Wang X, et al. Journal of Solid State Chemistry, 2008, 181(2), 294. 25 Wu W Y, Xu J Y, Peng K W, et al. Journal of Rare Earths, 2007, (3), 282. 26 Li Z N, Ou Y J, La P Q, et al. Journal of Rare Earths,2018,36(6),623. 27 Sharifitabar M, Vahdati khaki J, Haddad Sabzevar M. International Journal of Refractory Metals and Hard Materials, 2014, 47, 93. 28 Xu X H, Study on preparation and sintering property of lanthanum hexaboride powder. Master's Thesis, Hunan University, China, 2011(in Chinese). 徐秀华. 六硼化镧粉体的制备及其烧结性能研究. 硕士学位论文, 湖南大学, 2011. 29 Mattox T M, Groome C, Doran A, et al. Journal of Crystal Growth, 2018, 486, 60. 30 Zhou S L, Zhang J X, Liu D M. High Power Laser and Particle Beams, 2010(1), 171(in Chinese). 周身林, 张久兴, 刘丹敏. 强激光与粒子束, 2010(1), 171. 31 Chen W, Huang M S, Su Z F, et al. Journal of Chinese Society of Rare Earths, 2015(3), 323(in Chinese). 成维, 黄美松, 苏正夫, 等. 中国稀土学报, 2015(3), 323. 32 Bao L H, Zhang J X, Zhou S L, et al. Chinese Physics Letters, 2010, 27(10), 202. 33 Popov O, Loboda P, Klepko O, et al. Advances in Applied Ceramics, 2019, 118(4), 1.