Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21010240-7    https://doi.org/10.11896/cldb.21010240
  无机非金属及其复合材料 |
盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能
安宁1, 吴浩恺1, 朱敏2, 郑月红1, 占发奇1, 喇培清1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Research on the Large-scale Preparation of Ultrafine LaB6 Powders by Salt-assisted Combustion Synthesis and Its Sintered Properties
AN Ning1, WU Haokai1, ZHU Min2, ZHENG Yuehong1, ZHAN Faqi1, LA Peiqing1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 5599KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 LaB6是一种优异的阴极发射材料,抗辐射能力和抗中毒污染能力强,被广泛应用于航空航天、电子工业、仪表仪器、医疗器械等军事和高科技领域。采用盐助燃烧合成法一次性成功制备了公斤级的LaB6粉体,通过X射线衍射(XRD)、冷场发射型扫描电镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等对其进行表征,结果表明,LaB6颗粒为立方晶型,平均粒径为345~890 nm、纯度高于99.9%。然后采用放电等离子烧结(SPS)和热压烧结两种方式,在相同的烧结压力(35 MPa)及不同的烧结温度(1 600~1 800 ℃、1 800~1 900 ℃)下获得LaB6块体材料。对SPS和热压烧结的块体材料的致密化行为进行分析,获得相对密度达93.50%和95.75%的烧结材料。用HBRVU-187.5型布洛维氏光学硬度计测得1 900 ℃热压烧结样品的维氏硬度为(14.83±1) GPa,采用三点弯曲法计算得到此温度下样品的抗弯强度为137.04 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安宁
吴浩恺
朱敏
郑月红
占发奇
喇培清
关键词:  盐助燃烧合成法  LaB6粉体  SPS  热压烧结  相对致密度    
Abstract: LaB6 is an excellent cathode material for field emission, with strong anti-radiation and anti-poisoning pollution capabilities. It is widely used in military and high-tech fields such as aerospace, electronic industry, instrumentation and medical equipment. In this work, kilogram-scale LaB6 powders were successfully prepared by the salt-assisted combustion synthesis method. The LaB6 powder was characterized by X-ray diffraction (XRD), cold field emission scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). LaB6 particles adopted the cubic phase with the average particle size of 345—890 nm, and the purity is higher than 99.9%. Then, the LaB6 bulk materials were obtained by spark plasma sintering (SPS) and hot sintering under the same sintering pressure of 35 MPa at different sintering temperatures of 1 600—1 800 ℃ and 1 800—1 900 ℃ respectively. As a result, the sintered materials with relative densities of 93.50% and 95.75% were obtained. The Vickers hardness of the hot pressed sample at 1 900 ℃ was measured to be (14.83±1) GPa by HBRVU-187.5 Brinell Rockwell & Vickers optical hardness tester, and the flexural strength of the sample was calculated to be 137.04 MPa by the three-point bending method.
Key words:  salt-assisted combustion synthesis    LaB6 powder    SPS    hot pressed sintering    relative density
发布日期:  2022-06-09
ZTFLH:  TG139.8  
基金资助: 甘肃省科技计划项目(18YF1WA069)
通讯作者:  zhumin@lut.edu.cn; pqla@lut.edu.cn   
作者简介:  安宁,兰州理工大学硕士研究生,师承喇培清教授,主要研究方向为六硼化镧粉体的制备、六硼化镧的块体材料的烧结。
朱敏,兰州理工大学讲师,2010年7月毕业于兰州大学并获学士学位,2018年获得山东大学工学博士学位,主要从事金属间化合物的制备、结构、性能和应用方面的研究工作。
喇培清,兰州理工大学教授,博士研究生导师,1993年7月毕业于兰州理工大学获学士学位,2002年毕业于中科院研究生院获理学博士学位,并成为英国牛津大学访问学者。2005年6月起作为甘肃省高层次引进人才到有色金属新材料国家重点实验室(培育基地)工作,中国纳米技术学会理事、新加坡南洋理工大学访问教授。主要从事金属间化合物、有色金属纳米材料、纳米陶瓷刀具的制备、结构及其性能和应用等研究工作,先后主持完成了国家自然科学基金、中科院“西部之光”、中科院创新方向性项目、甘肃省自然科学基金、企业合作等项目30项。在Advanced MaterialsActa MaterialiaIntermetallics等国内外期刊发表论文120多篇,其中SCI、EI期刊80多篇,国际、国内会议邀请报告10篇,SCI他引500余次,单篇最高60次,获得国家发明专利7件。
引用本文:    
安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
AN Ning, WU Haokai, ZHU Min, ZHENG Yuehong, ZHAN Faqi, LA Peiqing. Research on the Large-scale Preparation of Ultrafine LaB6 Powders by Salt-assisted Combustion Synthesis and Its Sintered Properties. Materials Reports, 2022, 36(11): 21010240-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010240  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21010240
1 Liu H L, Zhang X, Ning S Y, et al. Vacuum, 2017, 143, 245.
2 Xu B, Yang X Y, Cheng H F, et al. Vacuum, 2019, 168, 108845.
3 Yu Y P, Wang S, Li W, et al. Powder Technology, 2018, 323, 203.
4 Hasan M, Sugo H, Kisi E. Journal of Alloys and Compounds, 2013, 578, 176.
5 Late D J, More M A, Misra P, et al. Ultramicroscopy,2007,107(9),825.
6 Zhang H, Tang J, Yuan J, et al. Nature Nanotechnology, 2016, 11(3), 273.
7 Zhang H, Tang J, Zhang Q, et al. Advanced Materials,2006,18(1),87.
8 Zhang H. Synthesis, characterization and field emission properties of rareearth hexaboride nanowires, UK, 2006.
9 Harutyunyan S R, Vardanyan V H, Kuzanyan A S, et al. Applied Physics Letters, 2003, 83(11), 2142.
10 Menaka, Patra R, Ghosh S, et al. Journal of Solid State Chemistry, 2012, 194, 173.
11 Gulian A, Wood K, Fritz G, et al. Nuclear Instruments and Methods in Physics Research Section A, Accelerators Spectrometers Detectors and Asso-ciated Equipment, 2000, 444(1-2), 232.
12 Ağaoğulları D, Duman I, Öveçoğlu M L. Ceramics International, 2012, 38(8), 6203.
13 Aaoullar D, Balc Z, Akaml N, et al. Ceramics International, 2019, 45(15), 18236.
14 Futamoto M, Nakazawa M, Kawabe U. Surface Science,1980,100(3),470.
15 Otani S, Nakagawa H, Nishi Y, et al. Journal of Solid State Chemistry, 2000, 154(1), 238.
16 Balakrishnan G, Lees M R, Paul D M. Journal of Crystal Growth, 2003, 256(1-2), 206.
17 Xu J Q, Zhao Y M, Zhang Q Y. Journal of Applied Physics, 2008, 104(12), 299.
18 Motojima S, Takahashi Y, Sugiyama K. Journal of Crystal Growth, 1978, 44(1), 106.
19 Wang X, Zhang J X, Yang X Y, et al. Advances in Applied Ceramics, 2017, 116(3), 132.
20 Dou Z H, Zhang T A, Zhang Z Q, et al. Transactions of Nonferrous Me-tals Society of China, 2011, 21(8), 1790.
21 Simsek T, Chattopadhyay A K, Baris M, et al. Journal of Solid State Chemistry, 2019, 276, 238.
22 Yuan Y F, Zhang L, Liang L, et al. Ceramics International, 2011, 37(7), 2891.
23 Brewer J R, Jacobberger R M, Diercks D R, et al. Chemistry of Mate-rials, 2011, 23(10), 2606.
24 Zhang M, Liang Y, Wang X, et al. Journal of Solid State Chemistry, 2008, 181(2), 294.
25 Wu W Y, Xu J Y, Peng K W, et al. Journal of Rare Earths, 2007, (3), 282.
26 Li Z N, Ou Y J, La P Q, et al. Journal of Rare Earths,2018,36(6),623.
27 Sharifitabar M, Vahdati khaki J, Haddad Sabzevar M. International Journal of Refractory Metals and Hard Materials, 2014, 47, 93.
28 Xu X H, Study on preparation and sintering property of lanthanum hexaboride powder. Master's Thesis, Hunan University, China, 2011(in Chinese).
徐秀华. 六硼化镧粉体的制备及其烧结性能研究. 硕士学位论文, 湖南大学, 2011.
29 Mattox T M, Groome C, Doran A, et al. Journal of Crystal Growth, 2018, 486, 60.
30 Zhou S L, Zhang J X, Liu D M. High Power Laser and Particle Beams, 2010(1), 171(in Chinese).
周身林, 张久兴, 刘丹敏. 强激光与粒子束, 2010(1), 171.
31 Chen W, Huang M S, Su Z F, et al. Journal of Chinese Society of Rare Earths, 2015(3), 323(in Chinese).
成维, 黄美松, 苏正夫, 等. 中国稀土学报, 2015(3), 323.
32 Bao L H, Zhang J X, Zhou S L, et al. Chinese Physics Letters, 2010, 27(10), 202.
33 Popov O, Loboda P, Klepko O, et al. Advances in Applied Ceramics, 2019, 118(4), 1.
[1] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[2] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[3] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[4] 张强, 蔡璋文, 董兰静, 柏跃磊, 朱春城. Ti2AlC陶瓷弥散增强Al基复合材料的制备及剪切性能[J]. 材料导报, 2020, 34(20): 20086-20090.
[5] 许慧, 赵洋, 任淑彬, 曲选辉. 真空压力熔渗与热压烧结制备(SiCp+Al2O3f)/2024Al复合材料的组织与拉伸性能分析[J]. 材料导报, 2018, 32(6): 951-956.
[6] 董善亮,霍思嘉,甄淑颖,张宇民,王玉金. 烧结温度对反应热压烧结制备ZrB2-ZrC-W2Zr复合材料组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1994-1997.
[7] 宋世金, 虞澜, 傅佳, 陈琪, 邱兴煌, 钟毅. 热压烧结增强Ca3Co4O9多晶的c轴择优织构和电输运性质的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 5-8.
[8] 李小强, 李尚鹏, 丁艳林, 马国俊, 金培鹏. 高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 77-80.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed