Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4038-4041    https://doi.org/10.11896/cldb.19110016
  无机非金属及其复合材料 |
含氟体系中无模板剂合成SSZ-13分子筛
王学铭1, 纪妍妍2, 郑春明2
1 天津工业大学环境科学与工程学院,省部共建分离膜与膜过程国家重点实验室,天津 300387
2 天津工业大学化学与化工学院,省部共建分离膜与膜过程国家重点实验室,天津 300387
Organic Template-Free Synthesis of SSZ-13 Zeolites in Fluoride Media
WANG Xueming1, JI Yanyan2, ZHENG Chunming2
1 State Key Laboratory of Separation Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387,China
2 State Key Laboratory of Separation Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387,China
下载:  全 文 ( PDF ) ( 3067KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本实验以玻璃纤维为硅源,在不添加有机模板剂的条件下通过水热合成法合成了SSZ-13分子筛。通过X射线衍射(XRD)、扫描电镜(SEM)、傅里叶红外光谱(FT-IR)等表征手段,探讨原料投料比中硅源的含量、SiO2/Al2O3比、体系碱度及晶化时间对SSZ-13分子筛形成的影响。结果表明,在120 ℃下,晶化反应24 h,且初始混合物的物质的量之比n(Na2O)∶n(Al2O3)∶n(SiO2)∶n(H2O)∶n(NH4F)=3∶1∶3.5∶250∶1时,制备得到了纯相的SSZ-13分子筛。该合成过程中不添加任何有机模板剂,降低了生产成本,且无需煅烧去除有机模板剂,减少了有害气体的排放。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王学铭
纪妍妍
郑春明
关键词:  SSZ-13分子筛  无有机模板  氟离子辅助合成    
Abstract: Glass fibers were used as silicon source to synthesize SSZ-13 zeolites by hydrothermal route without using organic template. The effects of silica content, SiO2/Al2O3 ratio, alkalinity and crystallization time on the formation of SSZ-13 zeolites were investigated by means of XRD, SEM and Fourier transform infrared spectroscopy (FT-IR). The results showed that pure phase of SSZ-13 zeolites can be synthesized at 120 ℃ for 24 hours from the reaction mixture with molar ratio of n(Na2O)∶n(Al2O3)∶n(SiO2)∶n(H2O)∶n(NH4F)=3∶1∶3.5∶250∶1. No organic template was applied during the synthesis process, so the production cost was reduced. The removal of the organic template is not needed which reduces the emission of harmful gases.
Key words:  SSZ-13 zeolite    OSDA-free    fluoride assisted synthesis
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TB321  
  O611.4  
基金资助: 国家自然科学基金(21403193);天津市自然科学基金(14JCQNJC02500)
通讯作者:  yanyan_ji@126.com   
作者简介:  王学铭,目前为天津工业大学环境工程专业硕士研究生,主要从事分子筛研究。
纪妍妍,天津工业大学副教授。2003年于吉林大学获应用化学专业学士学位,2008年在吉林大学获无机化学专业博士学位。2008年12月起在天津工业大学任教至今,主要研究方向为无机多孔材料、无机-有机复合膜材料、纳米材料及应用。
引用本文:    
王学铭, 纪妍妍, 郑春明. 含氟体系中无模板剂合成SSZ-13分子筛[J]. 材料导报, 2021, 35(4): 4038-4041.
WANG Xueming, JI Yanyan, ZHENG Chunming. Organic Template-Free Synthesis of SSZ-13 Zeolites in Fluoride Media. Materials Reports, 2021, 35(4): 4038-4041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110016  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4038
1 Zones S I, U.S. patent, 4544538, 1985.
2 Liu B, Zheng Y H, Hu N, et al.Microporous and Mesoporous Materials, 2014, 196, 270.
3 Zhang Y. Optimized synthesis of zeolite SSZ-13 and its catalysisa perfor-mance in methanol-to-olefins reaction.Master's Thesis, Taiyuan University of Technology, China, 2018 (in Chinese).
张翊. SSZ-13分子筛的优化合成及其MTO催化性能研究.硕士学位论文, 太原理工大学, 2018.
4 JabriH A, Miyake K, Ono K, et al. Microporous and Mesoporous Mate-rials, 2019, 278,322.
5 Zhang Q C, Materail Reports, 1994,8(3), 38 (in Chinese).
张铨昌.材料导报, 1994, 8(3), 38.
6 Peng C, Liu Z D, Horimoto A, et al. Microporous and Mesoporous Mate-rials,2018,255,192.
7 Yu L, Holmgren A, Zhou M, et al.Journal of Materlals Chemistry A, 2018,6(16), 6847.
8 Deimund M A, Harrison L, Lunn J D, et al. ACS Catalysis. 2016,6(2), 542.
9 Geng H L. Interzeolite conversion and solvent-free synthesis for SSZ-13 zeolite. Dalian University of Technology, China, 2018 (in Chinese).
耿海龙. SSZ-13分子筛的转晶及无溶剂合成.硕士学位论文, 大连理工大学, 2018.
10 Zhao Z C, Yu R, Zhao R R, et al. Applied Catalysis B-Environmental, 2017,217,421.
11 Zhang Y R, Huo Z P, Zhang L J, et al. Modern Chemical Industry, 2018, 38(9), 54(in Chinese).
张耀日, 霍志萍, 张丽娟等.现代化工, 2018, 38(9), 54.
12 Martin N, Moliner M, Corma A . Chemical Communications,2015,51(49), 9965.
13 Itakura M,Goto I, Takahashi A,et al. Microporous and Mesoporous Materials,2011, 144 (1-3),91.
14 Imai H, Hayashida N, Yokoi T, et al.Microporous and Mesoporous Materials, 2014,196,341.
15 Bing L C, Tian A X, Wang F, et al. Chemistry-A European Journal, 2018, 24(29), 7428.
16 Liu B, Zhen Y H, Hu N, et al. Microporous and Mesoporous Materials, 2014, 196, 270.
17 Zhang S G, Shen S H, Li Y.Synthesis of zeolite molecular sieve as cheap mineral raw material, Central South University Press,China, 2003 (in Chinese).
张术根, 申少华, 李酽.廉价矿物原料沸石分子筛合成研究, 中南大学出版社, 2013.
18 Bhadra B N, Song J Y, Khan N A, et al. Journal of Catalysis, 2018, 365, 94.
19 JabriH A, Miyake K, Ono K, et al. Microporous and Mesoporous Mate-rials, 2019, 278, 322.
20 Nasser G A, Muraza O, Nishitoba T, et al.Microporous and Mesoporous Materials, 2019, 274, 277.
[1] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[2] 钟兵, 邢志国, 王海斗, 吕晓仁, 黄艳斐, 郭伟玲, 张仲. 织构化表面摩擦学性能的研究进展[J]. 材料导报, 2020, 34(23): 23171-23178.
[3] 胡向平, 李建新, 杨斌, 沈义梅, 徐光以, 许佩琪, 荣幸, 孟繁艳. Nb2O5原料对H-ZF类高折射率玻璃透过性能的影响因素[J]. 材料导报, 2020, 34(Z2): 138-141.
[4] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[5] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[6] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[7] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[8] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[9] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[10] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[11] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[12] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[13] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[14] 王俊杰, 房晶瑞, 汪澜. 水泥生产全过程硫循环机制的研究进展[J]. 材料导报, 2018, 32(23): 4160-4169.
[15] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed