Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20120032-9    https://doi.org/10.11896/cldb.20120032
  高分子与聚合物基复合材料 |
有机硅改性环氧树脂薄膜封装材料的制备及性能研究
吉静茹1, 许智鹏2, 强军锋2, 刘育红1
1 西安交通大学化学工程与技术学院,西安 710049
2 西安科技大学材料科学与工程学院,西安 710054
Preparation and Performance of Organic Silicon Modified Epoxy Resin of Film Encapsulation Materials
JI Jingru1, XU Zhipeng2, QIANG Junfeng2, LIU Yuhong1
1 School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
2 College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 6200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过硅氢加成反应,合成了一种符合柔性薄膜封装工艺的环氧基有机硅树脂(SER)。在此基础上,对不同组成的SER/EP固化薄膜的动态热机械性能、力学性能、亲疏水性、热膨胀系数(CTE)以及热性能进行了系统分析。结果表明,当SER的添加量为10%(为占环氧树脂(EP)的质量分数)时,固化薄膜的拉伸强度为47.11 MPa,相较于单一的EP体系增加了17.8%;当SER的添加量增加至25%时,固化膜的Tg逐渐降低,交联密度由2.26 mol·m-3降低至0.8 mol·m-3。此外,SER/EP固化薄膜的柔韧性可达1 mm,通过SEM微观形貌表征也观察到较为明显的韧性断裂特征;同时该固化薄膜的疏水性增强,其接触角相比单一的EP固化膜增加了32.1°。当SER添加量为30%时,SER/EP固化薄膜具有较低的CTE1(8×10-6/℃)(25 ℃<T<50 ℃,T<Tg),CTE2降低至12.78×10-6/℃(70 ℃<T<150 ℃,T>Tg)。最后,通过喷墨打印封装工艺进一步验证了SER/EP胶液在薄膜封装领域的可使用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吉静茹
许智鹏
强军锋
刘育红
关键词:  薄膜封装  环氧树脂  环氧基有机硅树脂  柔韧性  热膨胀系数  喷墨打印    
Abstract: In this work, an epoxy-based silicone resin (SER) conforming to the flexible thin-film encapsulation process was synthesized through the hydrosilylation reaction. On this basis, the dynamic thermomechanical properties, mechanical properties, hydrophobicity, coefficient of thermal expansion (CTE) and thermal properties of SER/EP cured films with different compositions were systematically analyzed. The results show that when the addition of SER is 10% (mass fraction of epoxy resin (EP) mass), the tensile strength of the cured film gets 47.11 MPa, which increases by 17.8% compared with that of pure EP; when the addition of SER increases to 25%, Tg gradually decreases, with the crosslink density decreasing from 2.26 mol·m-3 to 0.8 mol·m-3. The flexibility of the SER/EP cured film can reach 1 mm, and obvious ductile fracture characteristics are also observed by SEM micromorphology characterization. The hydrophobicity of the SER/EP cured film is enhanced, and thus the contact angle increased by 32.1°. Especially, when the addition of SER is 30%, the SER/EP cured film has a lower CTE1(8×10-6/℃)(25 ℃<T<50 ℃,T<Tg), and CTE2 decreases to 12.78×10-6/℃(70 ℃<T<150 ℃,T>Tg). Finally, the availability of SER/EP adhesive solution in the film encapsulation field was further verified through the inkjet printing.
Key words:  film encapsulation    epoxy resin    epoxy silicone resin    flexibility    coefficient of thermal expansion    inkjet printing
发布日期:  2022-06-09
ZTFLH:  TQ317.3  
通讯作者:  liuyuh@xjtu.edu.cn   
作者简介:  吉静茹,硕士研究生,2020年6月毕业于西安交通大学。主要从事紫外光固化环氧树脂及性能研究。
刘育红,2001年于南京理工大学获得学士学位,2004年于西安交通大学获得硕士学位,2008年于西安交通大学获得博士学位,现为西安交通大学化工学院教授,博士研究生导师。主要从事多组分聚合物的微观结构调控,航天热防护复合材料基体树脂,成型工艺及关键技术的研究。主持国家自然科学基金、国防课题、陕西省自然科学基金、企业委托课题10余项。以第一/通讯作者在国际期刊发表学术论文40余篇,获得中国授权发明专利10项。
引用本文:    
吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
JI Jingru, XU Zhipeng, QIANG Junfeng, LIU Yuhong. Preparation and Performance of Organic Silicon Modified Epoxy Resin of Film Encapsulation Materials. Materials Reports, 2022, 36(11): 20120032-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120032  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20120032
1 Sun L, Uemura K, Takahashi T, et al. ACS Applied Material Interfaces, 2019, 11(46),43425.
2 Zhang J W, Zhang G P, Sun R,et al. Journal of Integration Technology,2014,3(6),92(in Chinese).
张贾伟,张国平,孙蓉,等.集成技术,2014,3(6),92.
3 Chu K, Bae K D, Song B G, et al. Applied Surface Science,2018,453,31.
4 Wang H X, Duan G Y, Zhu J M, et al. Material Reports, 2019, 33(Z2),573(in Chinese).
王海霞,段光远,朱吉萌,等.材料导报, 2019, 33(Z2),573.
5 Sun Y, Gong J, Liu Y, et al. Journal of Applied Polymer Science, 2019, 136(5),47027.
6 Hasa E, Scholte J P, Jessop J L P, et al. Macromolecules, 2019, 52(8), 2975.
7 Zhang S Y, Lin T S, He P,et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017,7(12), 2087.
8 Zhang S Y, Lin T S, He P,et al. Microelectronics Reliability,2017,78,181.
9 Janisse A P, Wiggins J S. Advanced Manufacturing: Polymer & Compo-sites Science,2019, 5(1),1.
10 Lin X G, Zhou B, Wang C J. Guangzhou Chemical Industry,2019, 47(18),46(in Chinese).
林新冠,周冰,王成骏. 广州化工, 2019,47(18),46.
11 Yu Z, Cui A, Zhao P,et al. Journal of Applied Biomaterials & Functional Materials, 2018,16(suppl),170.
12 Kermaninejad H, Najafi F, Soleimani‐Gorgani A. Journal of Applied Polymer Science,2019,136(41),48033.
13 Ma S, Liu W, Li H, et al. Journal of Macromolecular Science, Part B,2011, 50(5),975.
14 Xiong G, Kang P, Zhang J, et al. Progress in Organic Coatings,2019, 135,454.
15 Chen Y, Zhou C, Chang J, et al. RSC Advances,2014,4(105),60685.
16 Yao H S, Liu W Q, Hou M H, et al. Polymer Materials Science & Engineering, 2006(2),133(in Chinese).
姚海松,刘伟区, 侯孟华等.高分子材料科学与工程, 2006(2),133.
17 Chun H, Park S Y, Park S J, et al. Polymer, 2020,207,122916.
18 Chun H, Kim Y J, Tak S Y, et al. Polymer,2018, 135,241.
19 Shen Z, Xia Z, Zhang Y. Progress in Organic Coatings,2018, 114,115.
20 Ramli M R, Ramli R, Mohamed K, et al. Macromolecular Materials and Engineering ,2018, 303(2), 1700371.
21 Romo-Uribe A, Santiago-Santiago K, Reyes-Mayer A, Aguilar-Franco M. European Polymer Journal,2017,89,101.
22 Ni C, Ni G, Zhang L, et al. Journal of Colloid and Interface Science, 2011, 362(1),94.
23 Kim Y J, Chun H, Park S Y, et al. Polymer,2018, 147,81.
24 Dong K, Zhang J J, Cao M,et al. Polymer Testing, 2016, 55,44.
25 Hadipeykani M, Aghadavoudi F, Toghraie D. Physica A: Statistical Mechanics and its Applications, 2020, 546,123995.
26 Billotte C, Bernard F M, Ruiz E. European Polymer Journal, 2013, 49(11),3548.
27 Bian Z J. World Rubber Industry, 2013,40(8),42(in Chinese).
卞正军.世界橡胶工业,2013,40(8), 42.
28 Wang T, Ma L J, Wan P Y, et al. Journal of Photochemistry and Photobiology A: Chemistry,2004, 163(1-2),77.
29 Zhang D H, Chen Y K, Jia D M. Polymer Composites,2009,30(7),918.
30 Cheng X, Cheng W, Wang H B, et al. Journal of Functional Materials,2017,48(1),1177(in Chinese).
成煦,程文,王海波,等.功能材料,2017,48(1),1177.
31 Kwon H, Hong J, Le H N, et al. Macromolecular Research, 2021, 29(4), 313.
32 Zhang S Y, Ming Y, Yang W, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018,8(3),383.
33 Zhang S, Paik K W. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016,6(2),216.
34 Ren Q, Zou H, Liang M. Journal of Applied Polymer Science, 2014,131(9),40212.
35 Lei X X, Ye Y, Lin N,et al. Chinese Journal of Luminescence,2019,40(8),1040(in Chinese).
雷霄霄,叶芸,林楠,等.发光学报,2019,40(8),1040.
[1] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[2] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[3] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[4] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[5] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[6] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[7] 陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
[8] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[9] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[10] 吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
[11] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[12] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[13] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[14] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[15] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed