Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14190-14197    https://doi.org/10.11896/cldb.20060031
  高分子与聚合物基复合材料 |
UV固化脂环族环氧树脂体系的设计及其响应面优化
许智鹏1, 吉静茹2, 刘育红2,*, 强军锋1,*
1 西安科技大学材料科学与工程学院,西安 710000
2 西安交通大学化学工程与技术学院,西安 710000
Design of UV-curable Alicyclic Epoxy Resin System and Optimization of Its Response Surface
XU Zhipeng1, JI Jingru2, LIU Yuhong2,*, QIANG Junfeng1,*
1 College of Material Science and Engineering,Xi'an University of Science and Technology, Xi'an 710000, China
2 School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710000, China
下载:  全 文 ( PDF ) ( 5500KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了明确光敏剂的种类及用量对脂环族环氧树脂3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯(TTA-21)固化特性、透光性和力学性能的影响,采用差示扫描量热法(DSC)和紫外可见光光度计探究了2-异丙基硫杂蒽酮(ITX)、安息香二甲醚(BDK)、1-羟环己基苯酮(184)及其用量对脂环族环氧树脂TTA-21(4-乙烯基环氧环己烷为稀释剂,三苯基六氟锑酸盐为光引发剂)薄膜固化程度和透光率的影响。在此基础上进一步分析了二((3,4-环氧环己基)甲基)己二酸酯(TTA-26)和三羟甲基丙烷三缩水甘油醚(TPEG)对TTA-21固化物薄膜拉伸强度的作用规律。利用Box-Behnken响应面分析法对体系中TTA-26、TPEG和稀释剂的含量进行了优化。研究表明,在脂环族环氧树脂体系中光敏剂BDK的添加量为1%时,薄膜固化率可达98.12%,透光率可达86%以上;TPEG和TTA-26在固化体系中的添加量均为20%时,固化薄膜的拉伸强度分别为46.80 MPa和42.78 MPa,断裂伸长率分别为11.2%和13.7%;稀释剂添加量为30%时,固化薄膜的拉伸强度可达到最高值57.14 MPa。各响应因子对拉伸强度的影响强弱顺序为稀释剂(C)>TTA-26 (A)>TPEG (B),响应面法优化最佳工艺为TTA-26添加量24.75%、TPEG添加量20.65%、稀释剂添加量18.70%,在此条件下固化薄膜的拉伸强度可达58.97 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许智鹏
吉静茹
刘育红
强军锋
关键词:  紫外光聚合  光敏剂  环氧树脂  薄膜封装  拉伸强度  优化    
Abstract: In order to clarify the effects of the type and dosage of photosensitizer on the curing properties, light transmittance and mechanical properties of 3, 4-epoxy cyclohexylmethyl-3, 4-epoxy cyclohexylformate (TTA-21) of aliphatic group epoxy resin, differential scanning calorimetry (DSC) and UV-visible photometer were used to investigate the effects of 2-isopropylthioxanone (ITX), benzoin dimethyl ether (BDK), 1-hydroxycyclohexylphenone (184) and their dosages on the diluent of atyclic epoxy resin TTA-21 (4-vinyl epoxy cyclohexane). Effect of triphenylhexafluoroantimonate as photoinitiator on curing degree and light transmittance of films.On this basis, the effects of bis(3,4-epoxycyclohexylmethyl) adipate (TTA-26) and trimethylolpropane triglycidyl ether (TPEG) on the TTA-21 cured film were further analyzed. The law of tensile strength. The Box-Behnken response surface analysis method was used to optimize the content of TTA-26, TPEG and diluent in the system. Research shows that when the photosensitizer BDK is 1% in the cycloaliphatic epoxy resin system, the film curing rate can reach 98.12%, and the light transmittance can reach more than 86%. When the addition amount of TPEG and TTA-26 is 20%, the tensile strength and elongation at break are 46.80 MPa and 42.78 MPa, respectively, and 11.2% and 13.7%, respectively. When the amount of diluent is 30%, the tensile strength of the cured film can reach the highest value of 57.14 MPa. The order of the influence of each response factor on tensile strength is diluent (C)>TTA-26 (A)> TPEG (B); The optimized process by response surface methodology is TTA-26 addition amount 24.75%, TPEG addition the amount is 20.65%, and the amount of diluent is 18.70%. Under these conditions, the tensile strength of the cured film can reach 58.97 MPa.
Key words:  UV polymerization    photosensitizer    epoxy resin    thin film capsulation    tensile strength    optimization
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TQ317.3  
通讯作者:  * liuyuh@xjtu.edu.cn;qjfcamel@163.com   
作者简介:  许智鹏,硕士研究生,现就读于西安科技大学材料科学与工程学院。主要从事紫外光固化环氧树脂及性能研究。
刘育红,西安交通大学化工学院教授,博士研究生导师。主要从事多组分聚合物的微观结构调控,航天热防护复合材料基体树脂、成型工艺及关键技术的研究。主持国家自然科学基金、国防课题、陕西省自然科学基金、企业委托课题10余项。以第一/通讯作者在国际期刊发表学术论文40余篇,获得中国授权发明专利10项。
强军锋,西安科技大学材料科学与工程学院副教授,博士,硕士研究生导师。主要从事导电高分子材料合成及应用、生物工程材料的制备及应用研究。主持或参与国家自然科学基金项目、省级项目12项目,发表论文20余篇。
引用本文:    
许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
XU Zhipeng, JI Jingru, LIU Yuhong, QIANG Junfeng. Design of UV-curable Alicyclic Epoxy Resin System and Optimization of Its Response Surface. Materials Reports, 2021, 35(14): 14190-14197.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060031  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14190
1 Gao N, Liu W Q, Yan Z L, et al. Optical Materials, 2013,35(3), 567.
2 Zhang X H, Zhang Z H, Xia X N, et al. European Polymer Journal, 2007,43(5), 2149.
3 Kermaninejad H, Najafi F, Gorgani A S. Journal of Applied Polymer Science, 2019,136(41),48033.
4 Xia Y Z, Zhang D, Li Z, et al. European Polymer Journal, 2020,127,109594.
5 Zhang X H, Xu W J, Xia X N, et al. Materials Letters, 2006,60(28),3319.
6 Tripathi G, Srivastava D. Materials Science and Engineering:A, 2008,496(1-2),483.
7 Kowalczyka K, Kowalczykb A. Progress in Organic Coatings, 2017,112,1.
8 Huang B W, Wu B L, Han L L, et al. Journal of Wuhan University of Technology:Materials Science Edition, 2019, 34 (4),761.
9 Golaz B, Michaud V, Leterrier Y, et al. Polymer, 2012,53(10), 2038.
10 Huang J J, Yuan T, Yang Z C,et al. Progress in Organic Coatings, 2019,126, 8.
11 Zhang B X, Li T T, Kang Y Q. Research on Chemical Intermediates, 2017,43, 6617.
12 Foix D, Fernández F X, Ramis X, et al. Reactive and Functional Polymers, 2010,71(4), 417.
13 Krzysztof K, Agnieszka K. Progress in Organic Coatings, 2015,89, 100.
14 Myong J Y, Sang H K, Seong D P,et al. European Polymer Journal, 2010,46(5),1158.
15 Zhao X T, Huang Z Q, Song P,et al. Thermochimica Acta, 2019,680,178380.
16 Maryam J, Seyed R P, Seyed S M K,et al. Progress in Organic Coatings, 2020,140,105505.
17 Dosow D,Qin Q Z, Hizal G,et al. Polymer, 1996,37(13), 2821.
18 Rong J C, Qu X N. Acta Polymerica Sinica, 1996(5),15(in Chinese).
荣家成,屈秀宁. 高分子学报,1996(5),15.
19 Sun F,Liu J,Huang Y L. Journal of Radiation Research and Radiation Processing, 2002(4), 255(in Chinese).
孙芳,柳冀,黄毓礼. 辐射研究与辐射工艺学报, 2002(4), 255.
20 Zhou J, Zhang Q Y,Zhang H P,et al. Materials Reports A:Review Papers, 2011,25(1), 16(in Chinese).
周健,张秋禹,张和鹏, 等. 材料导报:综述篇, 2011,25(1), 16.
21 Jian K,Yang J L,Nie J. Coating and Protection, 2016,37(4), 41(in Chinese).
简凯,杨金梁,聂俊. 涂层与防护, 2016,37(4), 41.
22 Cho J D, Kim E O, Kim H K, et al. Polymer Testing, 2002,21(7), 781.
23 James V C, Myoungsouk J. Journal of Photochemistry & Photobiology A: Chemistry, 2003,159(2), 173.
24 Rath S K, Boey F Y C, Abadie M J M. Polymer International, 2004, 53, 857.
25 Golaz B, Michaud V, Leterrier Y,et al. Polymer, 2012,53(10),2038.
26 Cho J D, Kim H K, Kim Y S, et al. Polymer Testing, 2003,22,633.
27 Cai W P,Wang D H,Sheng W M. Paint & Coatings Industry, 2012,42(9),61(in Chinese).
蔡万泼,王德海,盛伟明. 涂料工业, 2012,42(9),61.
28 Wang T T, Huang P. Composites Communication, 2019,14,55.
29 Lei F, Zhang C T, Cai Z P, et al. Polymer, 2018,150,44.
30 Bai T,Guo A R,Li R J,et al. Chinese Journal of Applied Chemistry, 2016,33(12),1401 (in Chinese).
白天,郭安儒,李瑞杰,等. 应用化学, 2016,33(12),1401.
31 Chen Z A,Liu S L, Guo J Y,et al. Polymer Materials Science & Enginee-ring, 2012,28(10),8(in Chinese).
陈志安,刘书林,郭俊英,等. 高分子材料科学与工程, 2012,28(10),8.
32 Minakshi S J,Deepak S. Journal of Hazardous Materials, 2011,185(2-3),1198.
[1] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[2] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[3] 吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
[4] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[5] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[6] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[7] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[8] 单腾, 王思捷, 殷凤仕, 乔玉林, 刘鹏飞. 激光清洗的典型应用及对基体表面完整性影响的研究进展[J]. 材料导报, 2021, 35(11): 11163-11172.
[9] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[10] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[11] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[12] 杨海冬, 王德志, 李洪峰, 冯浩, 肖万宝, 赵立伟, 曲春艳. 含酚酞侧基聚芳醚酮(PEK-C)对联苯型环氧树脂性能的影响[J]. 材料导报, 2020, 34(Z2): 580-585.
[13] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[14] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[15] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed