Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14198-14203    https://doi.org/10.11896/cldb.20050159
  高分子与聚合物基复合材料 |
低温下水泥路面调温相变材料的制备及性能
朱洪洲1,2,†, 陈瑞璞1,†,*, 苟珊3, 王大谦1, 胡蓝心1
1 重庆交通大学土木工程学院,重庆 400074
2 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
3 中铁二院工程集团有限公司公路市政院,成都 610031
Preparation and Performance of Cement Pavement Temperature-adjusting Phase Change Materials Under Low Temperature
ZHU Hongzhou1,2,†, CHEN Ruipu1,†,*, GOU Shan3, WANG Daqian1, HU Lanxin1
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
3 Highway Municipal Design Institute, China Railway Eryuan Engineering Group. Co. Ltd, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 3732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对低温条件下水泥路面调温相变材料的制备及优选,以膨胀石墨作为相变材料的载体,探究辛酸-癸酸、十四烷两种相变材料的相变性能。基于最低共熔相变温度理论,结合步冷曲线实验确定了辛酸-癸酸共熔物最佳的共熔质量比。通过差示扫描量热分析实验、红外光谱实验、热重分析实验研究了两种相变材料的相变过程及化学性质。研究结果表明:辛酸-癸酸和十四烷的低温相变温度区间在-1.8~2.5 ℃左右,二者的相变性能受水泥水化放热的影响小,符合低温相变材料要求。但十四烷具有更高的相变焓,因此建议将其作为低温下水泥路面调温性能的相变材料。多次相变循环后,辛酸-癸酸和十四烷均未发生化学变化,其相变性能稳定;膨胀石墨对十四烷的吸附性更佳,并且二者之间为物理吸附,封装后,十四烷的相变性能变化较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱洪洲
陈瑞璞
苟珊
王大谦
胡蓝心
关键词:  辛酸-癸酸  十四烷  膨胀石墨  低温相变性能  水泥路面    
Abstract: To prepare and select temperature-adjusting phase change materials for cement pavement under low temperature, expanded graphite was used as the carrier for phase change materials, the phase change properties of octanoic acid-decanoic acid and tetradecane were studied. In this study, the optimum eutectic mass ratio of octanoic acid-decanoic acid was determined by step-cooling curve experiments and the lowest eutectic mixture phase change temperature theory. The phase change process and chemical property of the two phase change materials were investigated by differential scanning calorimetric (DSC)analysis experiments, fourier transform infrared spectrometer(FT-IR)experiments and thermogravimetric analysis (TGA)experiments. The results show that: The low temperature phase change range of octanoic acid-decanoic acid and tetradecane is about -1.8—2.5 ℃, and their phase change performance is less affected by heat release from cement hydration.Octanoic acid-decanoic acid and tetradecane meet the requirements of low temperature phase change materials. However, tetradecane has a higher enthalpy of phase change, so it is recommended as a phase change material to regulate temperature for cement pavements at low temperatures; after multiple phase change cycles, there is no chemical change in octanoic acid-decanoic acid and tetradecane, their phase change properties are stable. The adsorption of expanded graphite to tetradecane is better, and it is a physical adsorption. After encapsulation,there is little change in phase change performance of tetradecane.
Key words:  octanoic acid-decanoic acid    tetradecane    expanded graphite    low temperature phase change performance    cement pavement
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  U414  
基金资助: 国家自然科学基金(51178491)
通讯作者:  * ruipuchen@126.com   
作者简介:  朱洪洲,现为重庆交通大学土木工程学院教授,博士研究生导师,交通土建工程材料国家地方联合工程实验室常务副主任,2005年毕业于东南大学获工学博士学位,2013—2014年公派美国罗格斯新泽西州立大学作访问学者。近年来主持国家自然科学基金项目2项,科技部重点专项子课题1项,交通运输部建设科技项目2项,参编行业和地方标准规范4部,获得省部级科技进步一等奖1项,二等奖2项,发表科研论文90余篇,主要从事功能性路面、路面材料疲劳损伤理论等方面的研究。
陈瑞璞,现为重庆交通大学土木工程学院博士研究生,指导教师为朱洪洲教授,研究方向为道路工程结构及材料。
引用本文:    
朱洪洲, 陈瑞璞, 苟珊, 王大谦, 胡蓝心. 低温下水泥路面调温相变材料的制备及性能[J]. 材料导报, 2021, 35(14): 14198-14203.
ZHU Hongzhou, CHEN Ruipu, GOU Shan, WANG Daqian, HU Lanxin. Preparation and Performance of Cement Pavement Temperature-adjusting Phase Change Materials Under Low Temperature. Materials Reports, 2021, 35(14): 14198-14203.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050159  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14198
1 Feng Zhe, Hu Dongxia, Zhao Long, et al. Materials Reports, 2015, 29(S1), 144(in Chinese).
冯哲, 虎东霞, 赵龙, 等. 材料导报, 2015, 29(S1), 144.
2 Si W, Zhou X Y, Ma B, et al. Construction and Building Materials, 2015, 98, 547.
3 Farnam Y, Esmaeeli H S, Zavattieri P D, et al. Cement & Concrete Composites, 2017, 84, 134.
4 Farnam Y, Krafcik M, Liston L, et al. Journal of Materials in Civil Engineering, 2016, 28(4), 04015161.
5 Gao Yingli, Hu Baixue, He Jing, et al. China Journal of Highway and Transport, 2011, 24(2), 12(in Chinese).
高英力, 胡柏学, 贺敬, 等. 中国公路学报, 2011, 24(2), 12.
6 Huo Manlin, Ma Baoguo, Wei Jianqiang, et al. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2010, 34( 6), 1177(in Chinese).
霍曼琳, 马保国, 魏建强, 等. 武汉理工大学学报(交通科学与工程版), 2010, 34(6), 1177.
7 Bentz D P, Turpin R. Cement & Concrete Composites, 2007, 29(7), 527.
8 Sakulich A R, Bentz D P. Journal of Materials in Civil Engineering, 2012, 24(8), 1034.
9 Lin Feifei. Study on phase change material for asphalt pavement deicingsnow. Master's Thesis, Chongqing Jiaotong University, China, 2014 (in Chinese).
林飞菲. 沥青路面融雪抗凝冰性相变材料的研究.硕士学位论文. 重庆交通大学,2014.
10 Zhou Xueyan, Ma Biao, Ren Yuzheng, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(11), 3611(in Chinese).
周雪艳, 马骉, 任宇铮, 等. 硅酸盐通报, 2018, 37(11), 3611.
11 Zhou Sunxi, Zhang Xuelai, Liu Sheng. Energy Storage Science and Technology, 2018,7(4), 692(in Chinese).
周孙希, 章学来, 刘升. 储能科学与技术, 2018, 7(4), 692.
12 Zhu Jianyong, He Zhaoyi, Lin Feifei. Materials Reports, 2015,29(S2), 472(in Chinese).
朱建勇, 何兆益, 林菲飞. 材料导报, 2015, 29(S2), 472.
13 Si Yayu. Experimental study on preparation and mechanical performance of activated carbon energy storage phase change concrete.Master's Thesis, Anhui University of Science & Technology, China, 2019(in Chinese).
司亚余. 活性炭储能相变混凝土制备与力学性能试验研究. 硕士学位论文, 安徽理工大学,2019.
14 Yang Xianzhang, Hu Baixue, Liao Chunfang, et al. Highway Enginee-ring, 2013, 38(1), 1(in Chinese).
杨献章, 胡柏学, 廖春芳, 等. 公路工程, 2013, 38(1), 1.
15 Zhang Y P,Su Y H. Journal of University of Science and Technology of China, 1995(4), 474(in Chinese).
张寅平, 苏跃红. 中国科学技术大学学报, 1995(4), 474.
16 He Lihong, Wang Hao,Yang Fan, et al. Applied Chemical Industry, 2018, 47(3), 448(in Chinese).
何丽红, 王浩, 杨帆, 等. 应用化工, 2018, 47(3), 448.
17 Zhang Zhengfei,Qin Ziyi, Li Yong, et al. Materials Reports A:Review Papers, 2019, 33(11), 3613(in Chinese).
张正飞, 秦紫依, 李勇, 等. 材料导报:综述篇, 2019, 33(11), 3613.
18 Jiang Dahua, Zhang Xinlin, Liao Shaofan, et al. Modern Chemical Industry, 2019, 39(10), 146(in Chinese).
蒋达华, 张鑫林, 廖绍璠, 等. 现代化工, 2019, 39(10), 146.
19 Gu Wanqing. Preparation and test analysis of phase changing energy storing concrete oflauryl alcohol-expanded perlite.Master's Thesis, Anhui University of Science & Technology, China,2019(in Chinese).
顾皖庆. 月桂醇/膨胀珍珠岩相变储能混凝土制备与试验分析. 硕士学位论文, 安徽理工大学, 2019.
[1] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[2] 王佩祥, 冯秀娟, 朱易春, 蒋达华. 利用膨胀石墨改进十二水磷酸氢二钠复合相变材料的蓄热性能[J]. 材料导报, 2020, 34(18): 18044-18048.
[3] 郭华超, 邓伟, 杨波, 黄国家, 李爽, 文芳. 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
[4] 李云涛, 晏华, 汪宏涛, 王群, 赵思勰. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(4): 94-99.
[5] 黄雪, 崔英德, 尹国强, 张步宁, 冯光炷. 癸酸-棕榈酸-硬脂酸/膨胀石墨蓄能复合相变材料的制备与热性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 52-56.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed