Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21050-21057    https://doi.org/10.11896/cldb.20070148
  环境催化材料 |
地表臭氧分解用氧化锰研究进展
邱晶, 赵明, 王健礼, 陈耀强
四川大学化学学院绿色化学与技术教育部重点实验室,成都 610064
Research Progress of Manganese Dioxide Catalyst for Ozone Decomposition
QIU Jing, ZHAO Ming, WANG Jianli, CHEN Yaoqiang
Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
下载:  全 文 ( PDF ) ( 19003KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,过渡金属锰的氧化物因其结构变化呈现性能多样性,在臭氧分解等大气污染物净化领域展现出得天独厚的优势。地表臭氧是一种常见的大气污染物,臭氧不仅会造成光化学污染,其强氧化性还会对人体健康造成严重损害,因此降低地表臭氧浓度至关重要。地表臭氧处理方法包括催化分解、药液吸收、电磁波辐射、热分解等,其中催化分解法因具有耗能低、环境友好的特点而被广泛使用。从性能、价格和应用背景等因素考虑,锰氧化物是催化臭氧分解的主流,结构的差异能影响催化臭氧分解的能力,锰氧化物结构多样,具有深刻的研究意义。锰基催化剂具有良好的活性,但在实际使用过程中催化剂的性能还受到水汽的影响,相对湿度越高,催化剂失活越严重。制备出低温性能好、耐湿能力强、使用寿命长且适应高空速的锰基臭氧分解催化剂是目前学者们追求的目标。本文总结了近年来锰氧化物在臭氧催化分解中的进展,重点介绍了单组分锰基催化剂、复合氧化物锰基催化剂的研究,简述了碱性阳离子对锰基催化剂活性的影响,得出了水汽、载体选择、空速等因素都会影响催化剂活性的结论。最后,提出了锰氧化物在臭氧催化分解研究中存在的问题并对其发展前景做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱晶
赵明
王健礼
陈耀强
关键词:  环境  催化剂  多相反应  地表臭氧  催化分解  锰氧化物    
Abstract: Manganese oxides show diversity of properties with the change of structure and show unique advantages in the field of purification of atmospheric pollutants for example ozone decomposition. Ground ozone is a common atmospheric pollutant. Ozone will not only cause photochemical pollution, but also cause serious damage to human health due to its strong oxidation. It is very important to reduce the concentration of ground ozone. Ozone treatment methods include catalytic decomposition, liquid absorption, electromagnetic radiation, thermal decomposition, etc. Catalytic decomposition method is widely used because of low energy consumption and environment-friendly characteristics. Considering the performance, price and application background, manganese oxides is the main stream of ozone catalytic decomposition. The difference in structure can affect ability of catalyze ozone decomposition. The structures of manganese oxides are various, which has profound research significance. However, the performance of manganese oxides is also affected by water vapor during actual use. The higher the relative humidity, the more serious the catalyst deactivation. It is the goal of scholars to prepare manganese-based catalyst with excellent performance at low temperature, high humidity and high space velocity. This review summarizes the progress of manganese oxides in ozone catalytic decomposition in recent years, and focuses on the progress of single component manganese-based catalysts and composite oxide manganese-based catalysts, and briefly describes the effect of basic cations on the activity of manganese-based catalyst, and summarizes water vapor, carrier selection, space velocity can affect catalyst activity. What's more, this review points out existing problems, key points and development trend of catalytic ozone decomposition.
Key words:  environment    catalyst    multiphase reaction    ground ozone    catalytic decomposition    manganese dioxides
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  X515  
基金资助: 四川省重大科技专项(2019ZDX0025);国家自然科学基金(21972098)
通讯作者:  wangjianli@scu.edu.cn   
作者简介:  邱晶,2019年6月毕业于四川大学,获得理学学士学位。现为四川大学研究生,在王健礼教授的指导下进行研究。目前主要研究领域为地表臭氧催化分解。
王健礼,男,理学博士,教授、博导,任职于四川大学化学学院。四川省学术技术带头人后备人选,移动源污染控制国家工程实验室理事,移动源污染控制国家工程实验室技术委员会委员,教育部工程研究中心主任,主编编写本科生教材2部,出版专著1部,科研工作一直从事环境催化、催化材料、机动车尾气净化催化剂及裂解催化剂的研究。作为项目负责人负责国家科技部首批重点研发计划课题1项(2016YFC0204903),自然科学基金面上项目(21972097),国防科技重大专项3项等各类项目共计15项。目前已正式发表SCI论文60余篇(通讯作者或第一作者论文)。获四川省科技进步奖一等奖两项(2013,2017)。
引用本文:    
邱晶, 赵明, 王健礼, 陈耀强. 地表臭氧分解用氧化锰研究进展[J]. 材料导报, 2021, 35(21): 21050-21057.
QIU Jing, ZHAO Ming, WANG Jianli, CHEN Yaoqiang. Research Progress of Manganese Dioxide Catalyst for Ozone Decomposition. Materials Reports, 2021, 35(21): 21050-21057.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070148  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21050
1 Bell M L, Mcdermott A, Zeger S L. Jama, 2004, 292(19), 2372.
2 Mølhave L, Kjærgaard S K, Sigsgaard T, et al. Indoor Air, 2005, 15(6), 383.
3 Seltzer K M, Shindell D T,Malley C S.Environmental Research Letters, 2018, 13(10).
4 Mcdonald-Buller E C, Allen D T, Brown N, et al.Environmental Science & Technology, 2011, 45(22), 9484.
5 Fu J Y, Feng Y J, Zhong B, et al. Sichuan Environment , 2001(1), 37(in Chinese).
傅嘉媛, 冯易君, 钟兵,等. 四川环境, 2001(1), 37.
6 Pan H, Zhou L N, Zhu Y, et al.Chinese Journal of Catalysis, 2011, 32(6), 1040(in Chinese).
潘浩, 周丽娜, 朱艺, 等. 催化学报,2011, 32(6), 1040.
7 Li X T, Ma J Z, Zhang C B, et al.Journal of Environmental Sciences, 2019, 80, 159.
8 Dhandapani B,Oyama S T.Applied Catalysis B:Environmental, 1997, 11(2), 129.
9 Brock S L, Duan N L, Tian Z R, et al.Chemistry of Materials, 1998, 10(10), 2619.
10 Jia J B, Zhang P Y,Chen L.Applied Catalysis B: Environmental, 2016, 189, 210.
11 Radhakrishnan R, Oyama S T, Chen J G, et al.Journal of Physical Chemistry B, 2001, 105(19), 4245.
12 Setvin M, Aschauer U, Scheiber P, et al. Science,2013,341(6149), 988.
13 Ma J Z, Wang C X, He H.Applied Catalysis B: Environmental, 2017, 201, 503.
14 Zhu G X, Zhu J G, Jiang W J, et al.Applied Catalysis B: Environmental, 2017, 209, 729.
15 Jia J B, Zhang P Y, Chen L.Catalysis Science & Technology, 2016, 6(15), 5841.
16 Bai Y, Huang H, Wang C M, et al.Materials Chemistry Frontiers, 2017, 1(10), 1951.
17 Chen Y X, Gao J Y, Huang Z W, et al.Environmental Science & Techno-logy, 2017, 51(12), 7084.
18 Zhang Y J, Sun C T, Lu P, et al.Crystengcomm, 2012, 14(18), 5892.
19 Xie X W, Li Y, Liu Z Q, et al.Nature, 2009, 458(7239), 746.
20 Selvakumar K, Senthil Kumar S M, Thangamuthu R, et al.Journal of Physical Chemistry C, 2015, 119(12), 6604.
21 Luo J, Zhang Q H, Garcia-Martinez J, et al. Journal of the American Chemical Society, 2008, 130(10), 3198.
22 Huang H, Sithambaram S, Chen C H, et al. Chemistry of Materials, 2010, 22(12), 3664.
23 Yadav G D, Chandan P A, Tekale D P. Industrial & Engineering Chemistry Research, 2012, 51(4), 1549.
24 Meng X L, Li P, Du M M. Industrial & Engineering Chemistry Research, 2017, 56(30), 8428.
25 Wang C X, Ma J Z, Liu F D, et al.The Journal of Physical Chemistry C, 2015, 119(40), 23119.
26 Villegas J C, Garces L J, Gomez S, et al.Chemistry of Materials, 2005, 17(7), 1910.
27 Peng B, Bao W J, Wei L L, et al.Petroleum Science, 2019, 16(4), 912.
28 Ma J Z, Wang C X,He H.Applied Catalysis B: Environmental, 2017, 201, 503.
29 Liu S L, Ji J, Yu Y, et al. Catalysis Science & Technology, 2018, 8,4264.
30 Duan X C, Yang J Q, Gao H Y, et al.Crystengcomm, 2012, 14(12), 4196.
31 Spasova I, Nikolov P, Mehandjiev D.Ozone Science & Engineering, 2007, 29(1), 41.
32 Miao L, Wang J L,Zhang P Y.Applied Surface Science, 2018, 466, 441.
33 Li X T, Ma J Z, Yang L, et al.Environmental Science & Technology, 2018, 52(21), 12685.
34 Pahalagedara L R, Dharmarathna S,King'ondu C K, et al. The Journal of Physical Chemistry C, 2014, 118(35),20363.
35 PoudeuP F P, Takas N, Anglin C, et al. Journal of the American Chemical Society, 2010, 132(16), 5751.
36 Yi T F, Wu J Z, Li M, et al.RSC Advances, 2015, 5(47), 37367.
37 Guo N, Song Y H, You H P, et al.European Journal of Inorganic Che-mistry, 2010(29), 4636.
38 Genuino H C, Seraji M S, Meng Y T, et al.Applied Catalysis B: Environmental, 2015, 163, 361.
39 Shen X F, Morey A M, Liu J, et al.The Journal of Physical Chemistry C, 2011, 115(44), 21610.
40 Yang L, Ma J Z, Li X T, et al.Industrial & Engineering Chemistry Research, 2020, 59(1), 118.
41 Rao Y, Zeng D B, Cao X Z, et al.Ceramics International, 2019, 45(6), 6966.
42 Lian Z H, Ma J Z, He H.Catalysis Communications, 2015, 59, 156.
43 贺泓, 连志华, 马金珠, 等. 中国专利, CN102600861A,2012.
44 Jia J B, Yang W J, Zhang P Y, et al.Applied Catalysis A: General, 2017, 546, 79.
45 Chen X, Zhao Z L, Liu S, et al.Journal of Rare Earths, 2020, 38(2), 175.
46 Yang Y J, Zhang P Y, Jia J B.Applied Surface Science, 2019, 484, 45.
47 Vittadini A, Selloni A, Rotzinger F P, et al.Physical Review Letters, 1998, 81(14), 2954.
48 Selloni A.Nature Materials, 2008, 7(8), 613.
49 Rong S P, Zhang P Y, Liu F, et al.ACS Catalysis, 2018,8(4), 3435.
50 Yang Y J, Jia J B, Liu Y, et al.Applied Catalysis A: General, 2018, 562, 132.
51 Zhang N, Li X Y, Ye H C, et al.Journal of the American Chemical Society, 2016, 138(28), 8928.
52 Yang Z Z, Ford D C, Park J S, et al.Chemistry of Materials, 2017, 29(4), 1507.
53 Zhu S L, Wang J,Nie L H.ChemistrySelect, 2019, 4(41), 12085.
54 Gopi T, Swetha G, Shekar C, et al.Catalysis Communications, 2017, 92, 51.
55 Gopalakrishnan J,Bhat V. Inorganic Chemistry, 1987, 26(26), 4299.
56 Boppana V B R, Yusuf S, Hutchings G S, et al.Advanced Functional Materials, 2013, 23(7), 878.
57 Cao R R, Zhang P Y, Liu Y, et al.Applied Surface Science, 2019, 495, 143607.
58 Chin J, Walsdorff C, Stranix B, et al.Angewandte Chemie International Edition, 1999, 38(18), 2756.
59 Oyama S T.Catalysis Reviews, 2000, 42(3), 279.
60 Hou J T, Liu L L, Li Y Z, et al.Environmental Science & Technology, 2013, 47(23), 13730.
61 Tseng L-T, Lu Y H, Fan H M, et al.Scientific Reports, 2015, 5, 9094.
62 Yuan Y F, Zhan C, He K, et al.Nature Communications, 2016, 7, 13374.
63 Zhu G X, Zhu J L, Li W L, et al.Environmental Science & Technology, 2018, 52(15), 8684.
64 Hu B X, Chen C H, Frueh S J, et al.The Journal of Physical Chemistry C, 2010, 114(21), 9835.
65 Hong W, Zhu T L, Sun Y, et al.Environmental Science & Technology, 2019, 53(22), 13332.
66 Yang W J, Zhu Y F, You F, et al.Applied Catalysis B Environmental, 2018,233, 184.
67 Yuan Y F, He K, Byles B W, et al.Chem, 2019, 5(7),1793.
68 Einaga H, Harada M,Futamura S.Chemical Physics Letters, 2005, 408(4-6), 377.
69 Tsai W T, Chang C Y, Jung F H, et al.Journal of Environmental Science and Health, Part A, 1998, 33(8), 1705.
70 Liu Y, Yang W J, Zhang P Y, et al.Applied Surface Science, 2018, 442, 640.
71 Li L X, Zhang P Y, Cao R R.Catalysis Science & Technology, 2020, 10(7), 2254.
72 Robinson D M, Buelow M T, Alden L R, et al. US patent, US2017/0333842A1,2017.
73 Yu Q W, Zhao M, Liu Z M, et al.Chinese Journal of Catalysis ,2009, 30(1), 1(in Chinese).
余全伟, 赵明, 刘志敏,等. 催化学报, 2009, 30(1), 1.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[3] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[6] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[7] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[8] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[9] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[10] 谭聪, 刘洋, 何莹, 李洋, 李博文, 仇浩. 不同粒径金属基纳米颗粒的性质与其环境行为和生物效应的关系[J]. 材料导报, 2021, 35(7): 7121-7126.
[11] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[12] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[13] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[14] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[15] 韦岳长, 赖可溱, 熊靖, 李远锋, 吴彤彤. 有机氯硅烷高沸物催化裂解材料研究进展[J]. 材料导报, 2021, 35(21): 21022-21027.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed